Документ подпи достой эл МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ информация образовательное учреждение высшего образования фио: Юлда института зоотехнии и биологии Дата подписация 27 (4) 224 09:49:47 Уникальный программный ключ: (ФГБОУ)

5fc0f48fbb34735b4d93139/ee06994d56e515e6

Институт мелиорации, водного хозяйства и строительства имени А.Н. Костякова Кафедра физики

УТВЕРЖДАЮ:
И.о. директора института

Инстит

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.13 ФИЗИКА

для подготовки бакалавров

ΦΓΟС ΒΟ

Направление: 36.03.02 Зоотехния

Направленности: Технология производства продуктов животноводства (по

отраслям), Кормление животных и технология кормов

Курс: 1, 2 Семестр: 2, 3

Форма обучения: заочная

Год начала подготовки: 2023

Разработчик: Маринова С.А., к. фм. н	Jerofen	
Рецензент: Понизовкин Д.А., к. т. н., доцент	« <u>3/</u> » <u>08</u> 2023 « <u>3/</u> » <u>08</u> 2023	
Программа составлена в соответствии с требов профессионального стандарта и учебного план 36.03.02 Зоотехния	заниями ФГОС ВО.	•
Программа обсуждена на заседании кафедры ф протокол № от «3/» 20	ризики 023 г.	
И.о. зав. кафедрой Коноплин Н.А., к.фм.н., до	оцент	
	« <u>3/</u> »	Γ
Согласовано: Председатель учебно-методической комиссии института зоотехнии и биологии Маннапов А.Г., д.б.н., профессор	Manne	
, , , ,	« <u>06</u> » <u>09</u> 2023	Γ
Заведующий выпускающей кафедрой молочного и мясного скотоводства Соловьева О.И., д.сх.н., профессор	Colof	
	« <u>06</u> »2023	Γ
Заведующий выпускающей кафедрой кормления животных Буряков Н. П., д.б.н., профессор	"_06 » _ 09	Γ.
Заведующий отделом комплектования ЦНБ	of Equito a d. p.	

СОДЕРЖАНИЕ

АННОТАЦИЯ	4
1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	5
2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ	5
3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНО ПРОГРАММЫ	
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	9
4.1 РАСПРЕДЕЛЕНИЕ ТРУДОЁМКОСТИ ДИСЦИПЛИНЫ ПО ВИДАМ РАБОТ ПО СЕМЕСТРАМ	9
5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	14
6. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТО ОСВОЕНИЯ ДИСЦИПЛИНЫ	
6.1. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМ НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ	14
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	23
7.1 ОСНОВНАЯ ЛИТЕРАТУРА	23 24
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	25
9. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ	
10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	25
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	28
Виды и формы отработки пропущенных занятий	28
12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧЕН	ОП RИІ

Аннотация

рабочей программы учебной дисциплины Б1.О.13 «ФИЗИКА» для подготовки бакалавра по направлению 36.03.02 Зоотехния, направленности «Технология производства продуктов животноводства (по отраслям)», «Кормление животных и технология кормов»

Цель освоения дисциплины: формирование у обучающихся компетенций, обеспечивающих владение навыками лабораторной работы, методами математического моделирования и физики, необходимыми в профессиональной деятельности, а также знание основных физических концепций и закономерностей, применяемых в биологических исследованиях.

Место дисциплины в учебном плане: дисциплина включена в обязательную часть учебного плана по направлению подготовки 36.03.02 Зоотехния, направленности «Биотехнология и генетика в селекции животных», «Технология производства продуктов животноводства (по отраслям)», «Кормление животных и технология кормов».

Требования к результатам освоения дисциплины: в результате освоения дисциплины формируются следующие компетенции (индикаторы): УК-1 (УК-1.1, УК-1.2), ОПК-4 (ОПК-4.1, ОПК-4.2, ОПК-4.3).

Краткое содержание дисциплины: механика, молекулярная физика и термодинамика, электромагнетизм, оптика и элементы квантовой механики.

Общая трудоемкость дисциплины: 2 зачетных единицы (72 часа). **Промежуточный контроль**: 3 семестр — зачет.

1. Цель освоения дисциплины

формирование у обучающихся компетенций, обеспечивающих владение навыками лабораторной работы, методами математического моделирования и физики, необходимыми в профессиональной деятельности, а также знание основных физических концепций и закономерностей, применяемых в биологических исследованиях.

2. Место дисциплины в учебном процессе

Дисциплина «Физика» относится к обязательной части дисциплин учебного плана. Дисциплина «Физика» реализуется в соответствии с требованиями ФГОС ВО, ОПОП ВО и Учебного плана по направлению 36.03.02 Зоотехния, направленности «Технология производства продуктов животноводства (по отраслям)», «Кормление животных и технология кормов».

Предшествующим курсом, на которых непосредственно базируется дисциплина «Физика» является дисциплина «Математика».

Дисциплина «Физика» является основополагающей для изучения следующих дисциплин: «Механизация и автоматизация животноводства», «Основы научных исследований», «Энергоэффективность в животноводстве».

Особенностью дисциплины является ее направленность на реализацию студентами полученных знаний в практической деятельности. Она является составной частью цикла дисциплин (Б1) и занимает одно из ведущих мест среди фундаментальных дисциплин.

Рабочая программа дисциплины «Физика» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций, представленных в таблице 1.

Требования к результатам освоения учебной дисциплины

Таблица 1

No	Код	Содержание компетенции	Индикаторы	В результате изуч	ения учебной дисципл должны:	ины обучающиеся
п/п	компетенции	(или её части)	компетенций	знать	уметь	владеть
1.	УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1 Знать алгоритмы анализа задач, выделяя их базовые составляющие УК-1.2 Уметь находить и критически анализировать информацию,	методику решения физических задач, основные понятия, законы и модели механики, статистической физики и термодинамики, электричества и магнетизма, теории колебаний и волн, квантовой физики, атомной и ядерной физики	выделять в профессиональных задачах изучаемые физические	Блидеть
			необходимую для решения поставленной задачи		процессы и явления	
2.	ОПК-4	Способен обосновывать и реализовывать в профессиональной деятельности современные технологии с использованием приборно-	ОПК-4.1 Знать основные естественные, биологические и профессиональные понятия и методы решения	основные физические явления и основные законы физики; границы их применимости, применение		

No	Код	Содержание компетенции	Индикаторы	В результате изуч	ения учебной дисципл должны:	ины обучающиеся
п/п	компетенции	(или её части)	компетенций	знать	уметь	владеть
		инструментальной базы	общепрофессиональных	законов в	•	
		и использовать основные	задач	важнейших		
		естественные,		практических		
		биологические и		приложениях;		
		профессиональные		основные		
		понятия, а также методы		физические		
		при решении		величины и		
		общепрофессиональных		физические		
		задач		константы		
			ОПК-4.2 Уметь	знать физические	работать с	основными
			обосновывать	принципы работы	приборами и	измерительными
			использование	современного	оборудованием	инструментами
			приборно-	диагностического	физической	(оптические
			инструментальной базы	оборудования,	лаборатории;	микроскопы,
			при решении	применяемого в	грамотно	спектральные
			общепрофессиональных	профессиональной	эксплуатировать	установки
			задач	сфере	аппаратуру;	
					выбирать средства	
					для	
					экспериментальных	
					исследований	
					физических	
					процессов в	
					профессиональной	
					деятельности	
			ОПК-4.3 Владеть			навыками
			навыками использования			использования
			в профессиональной			основных приборов
			деятельности			и оборудования
			современных технологий			физической
			и методов решения			

No ⊓/⊓	Код	Содержание компетенции	Индикаторы компетенций	В результате изуче	ения учебной дисципл должны:	ины обучающиеся
П/П	компетенции	(или её части)	компетенции	знать	уметь	владеть
			общепрофессиональных			лаборатории;
			задач			навыками
						решения
						технических задач
						с помощью
						инструментальной
						базы;
						навыками решения
						расчетных
						физических задач

4. Структура и содержание дисциплины

4.1 Распределение трудоёмкости дисциплины по видам работ по семестрам

Общая трудоёмкость дисциплины составляет 2 зач. ед. (72 часа), их распределение по видам работ семестрам представлено в таблице 2.

Таблица 2 Распределение трудоёмкости дисциплины по видам работ по семестрам

тиопродоменто грудостичности датехнични		Трудоёмкость			
Вид учебной работы	час.	в т. ч. по семестрам			
	всего/*	№ 2	№3		
Общая трудоёмкость дисциплины по учебному		36	36		
плану	72/0	30	30		
1. Контактная работа:	8,25	2	6,25		
Аудиторная работа	8,25	2	6,25		
в том числе:					
лекции (Л)	4	2	2		
лабораторные работы (ЛР)	4		4		
контактная работа на промежуточном контроле (КРА)	0,25		0,25		
2. Самостоятельная работа (СРС)	63,75	34	29,75		
контрольная работа	20	10	10		
самостоятельное изучение разделов,					
самоподготовка (проработка и повторение					
лекционного материала и материала учебников,	39,75	24	15,75		
подготовка к лабораторным и практическим					
занятиям т.д.)					
Подготовка к зачету (контроль)	4		4		
Вид промежуточного контроля:		зачет			

^{*} в том числе практическая подготовка.

4.2 Содержание дисциплины

Таблица 3

Тематический план учебной дисциплины

Temath reckni usian y reonon ghedinishindi						
Наименование разделов и тем дисциплин (укрупнённо)	Всего	Аудиторная Всего <u>работа</u>			Внеаудиторная работа СР	
дисциплин (укрупненно)		Л	ЛР	ПКР	paoora Cr	
Раздел 1 «Механика»	21	1			20	
Раздел 2 «Молекулярная физика и	15	1			14	
термодинамика»						
Всего за 2 семестр	36	2			34	
Раздел 1 «Механика»	6		1		5	
Раздел 2 «Молекулярная физика и	6		1		5	
термодинамика»						
Раздел 3 «Электромагнетизм»	12	1	1		10	
Раздел 4 «Оптика и элементы квантовой	11,75	1	1		9,75	
механики»						
Контактная работа на промежуточном	0,25			0,25		
контроле (КРА)						
Всего за 3 семестр	36	2	4	0,25	29,75	
Итого по дисциплине	72	4	4	0,25	63,75	

Раздел 1. Механика

Тема 1 «Кинематика»

Механика окружающей среды о кругообороте неорганических и биологических элементов и комплексов.

Кинематика точки и твердого тела. Перемещение, скорость и ускорение, тангенциальная и нормальная составляющие ускорения.

Тема 2 «Динамика материальной точки. Динамика вращательного движения твердого тела» Инерция, масса, импульс, сила. Независимость массы от скорости в классической механике. Границы применимости классической механики. Силы инерции. Понятие об эквивалентности сил инерции и гравитационных сил.

Динамика твердого тела. Вращение твердого тела вокруг неподвижной оси. Момент импульса твердого тела. Момент инерции. Основное уравнение вращательного движение. Моменты инерции простых тел. Теорема Штейнера. Уравнения произвольного движения твердого тела. Статика. Условия равновесия твердого тела.

Гармонические колебания их энергия. Сложение колебаний. Вынужденные колебания. Резонанс, его использование.

Раздел 2. Молекулярная физика и термодинамика

Тема 1 «Молекулярно-кинетическая теория (МКТ)»

Моль вещества. Число Авогадро. Молярная масса. Основное уравнение кинетической теории газа Распределение Максвелла – Больцмана.

Уравнение состояния идеального газа. Закон Дальтона. Средняя энергия молекулы. Внутренняя энергия идеального газа. Изохорический процесс. Число степеней свободы молекулы. Равнораспределение энергии по степеням свободы. Внутренняя энергия идеального газа. Теплоемкости газов.

Тема 2 «Термодинамика»

Термодинамические параметры. Первое начало термодинамики. Работа газа. Теплообмен, количество теплоты. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Теплоемкость. Уравнение Майера. Коэффициент Пуассона. Политропный процесс. Циклы. Термический КПД цикла. Тепловые двигатели, холодильные машины. Теорема Карно. Цикл Карно и его к.п.д. Второе начало термодинамики. Обратимые и необратимые процессы. Энтропия. Неравенство Клаузиуса. Определение энтропии равновесной системы через термодинамическую вероятность макросистемы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы.

Раздел 3. Электромагнетизм

Тема 1 «Электростатика»

Электрические заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона. Электростатическое поле, его характеристики. Эквипотенциальные поверхности и силовые линии электростатического поля. Принцип суперпозиции полей. Поток вектора напряженности электростатического поля. Теорема Гаусса (для вакуума). Потенциальный характер электростатического поля. Понятие потенциала. Расчет работы при перемещении заряда в электростатическом поле. Циркуляция вектора Е электростатического поля. Определение разности потенциалов в электростатическом поле. Связь напряженности и потенциала. Градиент потенциала.

Тема 2 «Постоянный электрический ток. Электромагнетизм»

Постоянный электрический ток, условия его существования и основные характеристики. Сторонние силы. Понятие ЭДС и напряжения. Сопротивление проволочного проводника. Соединения проводников. Закон Ома в интегральной форме для однородного и неоднородного участков цепи, для полной цепи. Правила Кирхгофа. Закон Джоуля — Ленца в интегральной форме. Мощность тока. Закон Ома и Джоуля — Ленца в дифференциальной форме. Электрический ток в металлах. Классическая теория электропроводности. Ток в вакууме. Эмиссия электронов. Газовые разряды.

Магнитное поле и его характеристики. Воздействие магнитного поля на рамку с током и на прямолинейный проводник с током. Силовые линии магнитной индукции. Силовая картина магнитного поля прямолинейного проводника с током и кругового витка. Принцип суперпозиции магнитных полей. Закон Био — Савара — Лапласа. Воздействие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряда в магнитном поле.\

Раздел 4. Оптика и элементы квантовой механики

Тема 1 «Геометрическая оптика»

Законы геометрической оптики. Применение законов геометрической оптики. Использование плоских и сферических зеркал. Преломление на сферических поверхностях. Погрешности оптических систем. Оптические приборы.

Тема 2 «Волновая оптика и квантовые свойства света»

Интерференция света. Условия возникновения интерференции. Метод векторной диаграммы для сложения двух или нескольких волн. Принцип получения интерференционной картины. Условия максимумов и минимумов. Разность фаз и разность хода. Интерференция в тонкой пленке. Кольца Ньютона. Интерференционные приборы (интерферометры), голография. Просветление оптики.

Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция на круглом отверстии. Дифракция на длинной щели. Дифракционная решетка. Главные максимумы. Главные минимумы. Разрешающая способность.

Поляризованный свет. Поляризация при отражении и преломлении. Двойное лучепреломление.

Тепловое изучение. Равновесное излучение. Лучеиспускательная и поглощательная способности. Абсолютно черное тело. Закон Кирхгофа. Закон Стефана — Больцмана. Распределение энергии в спектре абсолютно черного тела. Квантовая гипотеза и формула Планка. Оптическая пирометрия.

Фотоэлектрический эффект и способы его наблюдения. Основные законы фотоэффекта. Уравнение Эйнштейна. Фотоэлементы. Элементы фотометрии. Закон освещенности.

4.3 Лекции / лабораторные занятия

Таблица 4

Содержание лекций / лабораторных занятий и контрольные мероприятия

№ п/п	№ раздела	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции (индикаторы достижения компетенции)	Вид контроль ного мероприя тия	Кол- во Часо в / из них практи ческая подгото вка
1	Раздел 1. «Механика»				2
	Тема 1	Лекция № 1.1 «Механика»	УК-1		1
	«Кинематика»	(с применением	(УК-1.1;		
	Тема 2 «Динамика	мультимедийного	УК-1.2)		
	материальной точки.	оборудования)	ОПК-4		
	Динамика		(ОПК-4.1)		
	вращательного	Лабораторная работа №	УК-1	защита	1
	движения твердого	1.1 «Экспериментальное	(УК-1.1;	лаборато	
	тела»	изучение законов	УК-1.2)	рной	
		механики»	ОПК-4	работы	
			(ОПК-4.1;		
			ОПК-4.2;		
			ОПК-4.3)		
2	Раздел 2. «Молекулярі	ная физика и термодинамика	»		2

№ п/п	№ раздела	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции (индикаторы достижения компетенции)	Вид контроль ного мероприя тия	Кол- во Часо в / из них практи ческая подгото вка
	Тема 1 «Молекулярно- кинетическая теория (МКТ)» Тема 2	Лекция № 2.1 «Молекулярная физика и термодинамика» (с применением мультимедийного	УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1)		1
	«Термодинамика»	оборудования) Лабораторная работа № 2.1 «Экспериментальное изучение законов молекулярной физики и термодинамики»	УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1; ОПК-4.2; ОПК-4.3)	защита лаборато рной работы	1
3	Раздел 3. «Электромаг	тнетизм»	,		2
	Тема 1 «Электростатика» Тема 2 «Постоянный электрический ток. Электромагнетизм»	Лекция № 3.1 «Электромагнетизм» (с применением мультимедийного оборудования) Лабораторная работа № 3.1 «Экспериментальное изучение законов электромагнетизма»	УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1) УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1; ОПК-4.2;	защита лаборато рных работ	1
			ОПК-4.3)		
4	Раздел 4. «Оптика и эл	пементы квантовой механики	ı»		8/0
	Тема 1 «Геометрическая оптика» Тема 2 «Волновая оптика и квантовые свойства света»	Лекция № 4.1 «Оптика и элементы квантовой механики» (с применением мультимедийного оборудования)	УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1)		2
		Лабораторная работа № 4.1 «Экспериментальное изучение законов оптики»	УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1; ОПК-4.2; ОПК-4.3)	защита лаборато рной работы	2
5	Разделы 1-4	Контрольная работа по разделам 1-4	УК-1 (УК-1.1; УК-1.2) ОПК-4 (ОПК-4.1;	Контроль ная работа	2

№ п/п	№ раздела	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции (индикаторы достижения компетенции)	Вид контроль ного мероприя тия	Кол- во Часо в/из них практи ческая подгото вка
			ОПК-4.2;		
			ОПК-4.3)		

Таблица 5

N₂	Название раздела,	Перечень рассматриваемых вопросов для самостоятельного
п/п	темы	изучения
Разд	ел 1	•
1.	Тема 1 «Кинематика»	Предмет физики. Методы физического исследования. Роль физики в развитии техники и влияние техники на развитие физики. Классическая механика. Пространство и время в классической механике. Физические модели. (ОПК-1.1, ОПК-1.2, ОПК-1.3)
2.	Тема 2 «Динамика материальной точки. Динамика вращательного движения твердого тела»	Динамика. Механическая система. Сила. Масса и импульс. Момент инерции. Теорема Штейнера. Момент силы. Основное уравнение динамики вращательного движения твердого тела Энергия как универсальная мера различных форм движения и взаимодействия. Основное уравнение динамики вращательного движения твердого тела в обобщенном виде. Гидростатика несжимаемой жидкости. Давление столба жидкости. Сила Архимеда. Условия плавания тел. Деформация в твердом теле. Классификация колебаний. Механические колебания. Энергия колебаний. Дифференциальное уравнение гармонических колебаний. Волновое движение. Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны. (ОПК-1.1, ОПК-1.2, ОПК-1.3)
Разл	ел 2	(OIII 1.1, OIII 1.2, OIII 1.3)
1.	Тема 1 «Молекулярно- кинетическая теория» (МКТ)	Статистический и термодинамический методы исследования. Молекулярно-кинетическое толкование абсолютной температуры. (ОПК-1.1, ОПК-1.2, ОПК-1.3)
2.	Тема 2 «Термодинамика. Явления переноса»	Термодинамические параметры. Термодинамическое равновесие и процесс. Изопроцессы. Работа газа. Теплообмен, количество теплоты. Внутренняя энергия идеального газа. Применение первого начала термодинамики к изопроцессам. Коэффициент Пуассона. Политропный процесс. Теорема Карно. Обратимые и необратимые процессы. (ОПК-1.1, ОПК-1.2, ОПК-1.3)
Разд	ел 3	
1.	Тема 1 «Электричество»	Электрические заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона. Электростатическое поле, его характеристики. Проводники в электростатическом поле. Равновесие зарядов в проводнике. Типы диэлектриков. Поляризация диэлектриков и ее виды. Сверхпроводимость. Полупроводники (ОПК-1.1, ОПК-1.2, ОПК-1.3)

№	Название раздела,	Перечень рассматриваемых вопросов для самостоятельного		
п/п	темы	изучения		
2.	Тема 2	Силовая картина магнитного поля прямолинейного проводника с		
	«Постоянный	током и кругового витка. Намагничивание магнетиков.		
	электрический ток.	Напряженность магнитного поля. Магнитная проницаемость и		
	Электромагнетизм»	магнитная восприимчивость. Токи Фуко.		
		Энергетические характеристики электромагнитных волн. (ОПК-		
		1.1, ОПК-1.2, ОПК-1.3)		
Разд	цел 4			
1.	Тема 1	Оптика. Законы геометрической оптики. Полное внутреннее		
	«Геометрическая	отражение. Дисперсия. Линзы. Оптические приборы. (ОПК-1.1,		
	оптика»	ОПК-1.2, ОПК-1.3)		
2.	Тема 2 «Волновая	Эмпирические закономерности в атомных спектрах.		
	оптика и квантовые	Энергия связи ядра. Дефект масс. Энергетический эффект		
	свойства света»	ядерной реакции. Ядерные реакции. Понятие о дозиметрии и		
		защите. (ОПК-1.1, ОПК-1.2, ОПК-1.3)		

5. Образовательные технологии

Таблица 6

Применение активных и интерактивных образовательных технологий

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий
1	Лабораторная работа № 1.1 «Экспериментальное изучение	ЛР	Работа в малых
	законов механики»		группах
2	Лабораторная работа № 2.1 «Экспериментальное изучение	ЛР	Работа в малых
	законов молекулярной физики и термодинамики»		группах
3	Лабораторная работа № 3.1 «Экспериментальное изучение	ЛР	Работа в малых
	законов электричества и магнетизма»		группах
4	Лабораторная работа № 4.1 «Экспериментальное изучение	ЛР	Работа в малых
	законов оптики»		группах

6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности

Типовые задачи для защиты лабораторных работ, для зачета

Пример типовых задач для текущего контроля знаний обучающихся

Типовые задачи по разделу 1

1. Материальная точка движется в пространстве согласно уравнениям: x(t) = 5t (м), $y(t) = 4 - 2t^2$ (м), $z(t) = 3t - 4t^3$ (м). Найти модули скорости и ускорения точки в момент времени t = 1 с.

- 2. Какой угол составляет вектор полного ускорения точки, лежащей на ободе маховика, с радиусом маховика через t=1,5 с после начала движения? Угловое ускорение маховика $\varepsilon=0,77$ рад/с².
- 3. Найти изменение импульса шарика массы $m=100\,\mathrm{r}$ при ударе о землю и количество выделившейся теплоты, если он падает с высоты $h_1=200\,\mathrm{cm}$, а после удара поднимается на высоту $h_2=180\,\mathrm{cm}$.
- 4. Тонкостенный цилиндр диаметром $D=30\,\mathrm{cm}$ и массой $m=12\,\mathrm{kr}$ вращается согласно уравнению $\varphi(t)=A+Bt+Ct^3$, где $A=4\,\mathrm{pag}$, $B=-2\,\mathrm{pag/c}$, $C=0,2\,\mathrm{pag/c^3}$. Определить действующий на цилиндр момент сил M в момент времени $t=3\,\mathrm{c}$.
- 5. Давление воды, текущей по горизонтальной трубе, при изменении площади сечения увеличилось на $350~\Pi a$. Определить изменение скорости течения, если начальная скорость составляла 1,5~м/c.
- 6. Физический маятник в виде тонкого стержня длиной $l=120\,\mathrm{cm}$ колеблется около горизонтальной оси, перпендикулярной стержню, и находящейся на расстоянии a от середины стержня. При каком значении a период колебаний T имеет наименьшее значение? Найти его.
- 7. Определить период колебаний и максимальную скорость движения груза математического маятника, совершающего колебания по закону $x = 0, 2\sin\left(2\pi t \frac{\pi}{8}\right)$ (м).
- 8. Чему равна приведенная длина физического маятника, состоящего из тонкого стержня массой 1 кг длиной 80 см, который подвешен на оси, отстоящей на одну четвертую длины от одного из его концов?
 - 9. Определить длину волны частотой 50 Гц, если за 10 с она преодолевает 3 км.

Типовые задачи по разделу 2

- 1. Количество вещества гелия $\nu=1,5$ моль , температура $T=120~{\rm K}$. Определить суммарную кинетическую энергию E_k поступательного движения всех молекул этого газа.
- 2. Определить среднюю длину свободного пробега λ молекулы азота в сосуде вместимостью V=5 л. Масса газа m=0,5 г. Эффективный диаметр молекулы $0,3\cdot 10^{-9}$ м.
- 3. Чему равно изменение энтропии $10\,\mathrm{r}$ воздуха при изотермическом расширении от 3 до 8 литров?
- 4. При высокой температуре половина молекул азота диссоциировала на атомы. Чему равна удельная теплоемкость c_p при постоянном давлении в этих условиях? Найти показатель адиабаты.

Типовые задачи по разделу 3

- $1.\,\mathrm{T}$ ри точечных заряда q , 2q , -q находятся на одной прямой, расстояния между соседними зарядами равно d . Найти напряженность электрического поля в точке на этой же прямой на расстоянии d от отрицательного заряда
- 2. В вершинах треугольника со сторонами по 2 см находятся равные заряды по 2 нКл. Найти результирующую силу, действующую на четвертый заряд 1 нКл, помещенный в середине стороны треугольника.
- 3. Три гальванических элемента $\varepsilon_1=3~{\rm B}$, $\varepsilon_2=5~{\rm B}$, $\varepsilon_3=2~{\rm B}$ соединены параллельно и замкнуты на внешнее сопротивление $R=2~{\rm OM}$. Их внутренние сопротивления $r_1=1~{\rm OM}$, $r_2=2~{\rm OM}$ и $r_3=0,5~{\rm OM}$. Найти ток во внешней цепи и напряжения на каждом элементе.

- $4.\,$ По двум круговым виткам, имеющим общий центр, текут токи силой $5\,\mathrm{A}$ и $4\,\mathrm{A}$. Радиусы витков соответственно равны $4\,\mathrm{cm}$ и $3\,\mathrm{cm}$. Угол между их плоскостями 30° . Определить индукцию и напряженность в центре витков. Рассмотреть возможные случаи.
- 5. Колебательный контур имеет индуктивность $L=1,6~\Gamma$ н, ёмкость $C=40~\rm{h}\Phi$ и максимальное напряжение на зажимах $U=200~\rm{B}$. Чему равна в нем максимальная сила тока?

Типовые задачи по разделу 4

- 1. На дифракционную решетку нормально падает монохроматический свет с длиной волны $600 \, \mathrm{нm}$. Определите наибольший порядок спектра, полученный с помощью этой решетки, если ее постоянная $d=2 \, \mathrm{mkm}$.
- 2. Естественный свет проходит через поляризатор и анализатор, поставленные так, что угол между их главными плоскостями $\phi = 45^{\circ}$. Поляризатор отражает и преломляет 5% падающего на него света. Потерями в анализаторе можн6о пренебречь. Какова интенсивность луча, вышедшего из анализатора, по отношении к интенсивности естественного света?
- 3. Фотон при эффекте Комптона на свободном электроне был рассеян на угол 90° . Определить импульс, приобретенный электроном, если энергия фотона до рассеяния $1,02~\mathrm{M}$ эВ.
- 4. Определить, как изменится длина волны де Бройля электрона атома водорода при переходе его с четвертой боровской орбиты на вторую.
- 5. Определите, на сколько изменилась энергия электрона в атоме водорода при излучении атомом фотона с длиной волны 0,486 мкм.

Пример типового варианта контрольной работы для текущего контроля знаний обучающихся

- 1. При горизонтальном полете со скоростью $\upsilon=250\,\mathrm{m/c}$ снаряд массой $m=8\,\mathrm{kr}$ разорвался на две части. Большая часть массой $m_1=6\,\mathrm{kr}$ получила скорость $\upsilon_1=400\,\mathrm{m/c}$ в направлении полета снаряда. Определить модуль и направление скорости υ_2 меньшей части снаряда.
- 2. Определить количество теплоты Q, которое надо сообщить кислороду объемом V=50 л при его изохорном нагревании, чтобы давление газа повысилось на $\Delta p=0,5$ МПа .
- 3. Пылинка массой $m=200~{\rm MKF}$, несущая на себе заряд $q=40~{\rm HK}$ л, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов $U=200~{\rm B}$ пылинка имела скорость $\upsilon=10~{\rm m/c}$. Определить скорость υ_0 пылинки до того, как она влетела в поле.
- 4. Электрон движется в однородном магнитном поле с индукцией $B=0,1\,\mathrm{Tn}$ по окружности. Определите угловую скорость вращения электрона.
- 5. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.

Вопросы для защиты лабораторных работ

Вопросы по разделу 1

- 1. Законы Ньютона
- 2. Основной закон динамики вращательного движения. Его формулировки
- 3. Параметры (s, v, a) равномерного и равнопеременного движения. Кинематические формулы
- 4. Кинетическая энергия вращательного движения
- 5. Природа и виды сил трения

- 6. Сила трения качения, скольжения, покоя
- 7. Параметры и формулы, описывающие вращательное движение
- 8. Момент инерции материальной точки и тела
- 9. Основной закон динамики вращательного движения
- 10. Теорема Штейнера
- 11. Диаграмма растяжения. Предел прочности, упругости, текучести
- 12. Закон Гука в дифференциальной и интегральной форме. Относительное и абсолютное удлинение. Напряжение
- 13. Закон сохранения механической энергии
- 14. Закон сохранения момента импульса при вращательном движении
- 15. Описание движения тела в поле сил тяжести (под углом к горизонту)
- 16. Уравнение неразрывности
- 17. Уравнение Бернулли
- 18. Вязкость. Коэффициент вязкости (динамической и кинематической). Параметры, определяющие вязкость среды
- 19. Режимы течения жидкости. Число Рейнольдса
- 20. Физический, пружинный и математический маятник. Приведенная длина физического маятника
- 21. Характеристики колебаний (период, частота, амплитуда, фаза)
- 22. Волна. Виды волн. Характеристики волн
- 23. Формула расчета периода пружинного, физического и математического маятника

Вопросы по разделу 2

- 1. Основное уравнение молекулярно-кинетической теории
- 2. Идеальный газ
- 3. Уравнение состояния идеального газа
- 4. Шкала Кельвина и Цельсия
- 5. Газовые законы
- 6. Изопроцессы
- 7. Первое начало термодинамики
- 8. КПД теплового двигателя и идеальной машины Карно
- 9. Реальный газ. Уравнение Ван-Дер-Ваальса
- 10. Адиабатный процесс. Коэффициент Пуассона

Вопросы по разделу 3

- 1. Напряженность и потенциал электростатического поля, связь между ними
- 2. Принцип суперпозиции полей. Работа поля
- 3. Теорема о циркуляции вектора напряженности
- 4. Силовые линии и эквипотенциальные поверхности, их взаимосвязь. Вектор градиента
- 5. Теорема Гаусса для электростатического поля в вакууме и веществе
- 6. Емкость. Параметры, определяющие емкость плоского конденсатора
- 7. Связь напряжения и напряженности в электростатическом поле
- 8. Соединения конденсаторов
- 9. Типы диэлектриков и виды поляризации. Поляризованность. Диэлектрическая проницаемость. Электрическое смещение
- 10. Энергия заряженного проводника, конденсатора. Объемная плотность энергии
- 11. Сопротивление проволочного проводника
- 12. Соединения проводников
- 13. Сила и плотность тока
- 14. Законы Ома
- 15. Закон Джоуля Ленца
- 16. Правила Кирхгофа
- 17. Полупроводники, их отличие от металлов и диэлектриков
- 18. Электронная и дырочная проводимость в полупроводниках

- 19. Собственная и примесная проводимость в полупроводниках
- 20. Полупроводники p и n -типа, их получение
- 21. Магнитное поле, его характеристики. Силовые линии. Сила Лоренца и сила Ампера. Закон Био-Саварра-Лапласа. Магнитное поле Земли
- 22. Основные положения теории электромагнитного поля Максвелла. Уравнения Максвелла. Теорема о циркуляции вектора \vec{B} . Теорема Гаусса для магнитного поля в вакууме
- 23. Ферро-, пара- и диамагнетики, их отличительные особенности. Механизм формирования остаточной намагниченности у ферромагнетиков. Точка Кюри. Петля гистерезиса
- 24. Магнитное поле. Поток вектора \vec{B} . Явление электромагнитной индукции и самоиндукции. Правило Ленца
- 25. Основные положения теории электромагнитного поля Максвелла. Уравнения Максвелла. Теорема о циркуляции вектора \vec{B} . Теорема Гаусса для магнитного поля в вакууме

Вопросы по разделу 4

- 1. Законы отражения и преломления световых волн
- 2. Относительный и абсолютный показатели преломления. Явление полного внутреннего отражения
- 3. Поляризация света. Угол Брюстера. Закон Малюса
- 4. Интерференция и дифракция света
- 5. Опыт Юнга. Интерференция в тонких пленках
- 6. Кольца Ньютона в отраженном и проходящем свете
- 7. Условие интерференционных максимумов и минимумов
- 8. Принцип Гюйгенса-Френеля. Зоны Френеля
- 9. Условие главных максимумов и минимумов для дифракционной решетки
- 10. Дифракционная картина в монохроматическом и белом свете. Разрешающая способность дифракционной решетки
- 11. Явление фотоэффекта. Виды фотоэффекта
- 12. Уравнение Эйнштейна. Красная граница фотоэффекта
- 13. Параметры, характеризующие способность тел поглощать и излучать электромагнитные волны
- 14. Закон Кирхгофа. Закон Стефана Больцмана. Закон Вина
- 15. Абсолютно черное тело. Серое тело
- 16. Спектр. Виды спектров. Спектры испускания и поглощения. Спектральный анализ и его применение
- 17. Постулаты Бора. Образование спектра излучения атома водорода

Перечень вопросов, выносимых на промежуточную аттестацию (зачет) Раздел 1 «Механика»

- 1. Предмет физики. Методы физического исследования. Роль физики в развитии техники и влияние техники на развитие физики.
- 2. Механическое движение как простейшая форма движения материи. Классическая механика. Пространство и время в классической механике. Физические модели.
- 3. Кинематическое описание движения точки. Скорость и ускорение при криволинейном движении. Нормальное и касательное (тангенциальное) ускорения.
- 4. Движение точки по окружности. Векторы угловой скорости и углового ускорения. Связь линейных скоростей и ускорений с угловыми скоростями и ускорениями.
- 5. Динамика. Механическая система. Сила. Масса и импульс. Современная трактовка законов Ньютона. Силы в механике.
- 6. Импульс системы материальных точек. Закон сохранения импульса.
- 7. Обобщенная формулировка II закона Ньютона. Закон всемирного тяготения.

- 8. Энергия как универсальная мера различных форм движения и взаимодействия. Работа силы. Консервативные и неконсервативные силы. Мощность.
- 9. Кинетическая энергия механической системы. Потенциальная энергия.
- 10. Закон сохранения энергии в механике. Удары.
- 11. Момент инерции. Теорема Штейнера.
- 12. Момент силы. Основное уравнение динамики вращательного движения твердого тела.
- 13. Кинетическая энергия вращающегося и катящегося твердого тела. Работа при вращательном движении.
- 14. Момент импульса материальной точки, механической системы и тела.
- 15. Основное уравнение динамики вращательного движения твердого тела в обобщенном виде. Закон сохранения момента импульса.
- 16. Деформация в твердом теле. Закон Гука. Коэффициент Пуассона. Диаграмма растяжения.
- 17. Гидростатика несжимаемой жидкости. Давление столба жидкости. Сила Архимеда.
- 18. Стационарное течение идеальной жидкости. Уравнение неразрывности. Уравнение Бернулли.
- 19. Вязкость жидкости. Режимы течения. Число Рейнольдса.
- 20. Классификация колебаний. Уравнение гармонических колебаний. Механические колебания. Энергия колебаний. Дифференциальное уравнение гармонических колебаний.
- 21. Маятники.
- 22. Свободные затухающие колебания. Вынужденные колебания. Резонанс.
- 23. Волновое движение. Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны.

Раздел 2 «Молекулярная физика и термодинамика»

- 24. Статистический и термодинамический методы исследования. Основное уравнение молекулярно-кинетической теории идеальных газов. Температурная шкала Цельсия и Кельвина.
- 25. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- 26. Распределение Максвелла молекул идеального газа.
- 27. Распределение Больцмана и барометрическая формула. Среднее число столкновений и средняя длина свободного пробега.
- 28. Термодинамические параметры. Термодинамическое равновесие и процесс. Уравнение состояния идеального газа. Изопроцессы.
- 29. Первое начало термодинамики. Работа газа. Теплообмен, количество теплоты. Внутренняя энергия идеального газа. Число степеней свободы.
- 30. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс.
- 31. Теплоемкость. Уравнение Майера. Коэффициент Пуассона. Политропный процесс.
- 32. Циклы. Термический КПД цикла. Тепловые двигатели, холодильные машины. Теорема Карно. Цикл Карно и его к.п.д. Второе начало термодинамики.
- 33. Обратимые и необратимые процессы. Энтропия. Неравенство Клаузиуса. Определение энтропии равновесной системы через термодинамическую вероятность макросистемы. Теорема Нернста-Планка.
- 34. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Вандер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы.
- 35. Явление переноса. Диффузия, теплопроводность, внутреннее трение.

Раздел 3 «Электромагнетизм»

- 36. Электрические заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона.
- 37. Электростатическое поле, его характеристики. Эквипотенциальные поверхности и силовые линии электростатического поля. Принцип суперпозиции полей.
- 38. Поток вектора напряженности электростатического поля. Теорема Гаусса (для

- вакуума).
- 39. Потенциальный характер электростатического поля. Понятие потенциала. Расчет работы при перемещении заряда в электростатическом поле. Циркуляция вектора \vec{E} электростатического поля.
- 40. Определение разности потенциалов в электростатическом поле. Связь напряженности и потенциала. Градиент потенциала.
- 41. Проводники в электростатическом поле. Равновесие зарядов в проводнике. Ёмкость проводников.
- 42. Емкость конденсаторов. Соединения конденсаторов. Энергия заряженного конденсатора.
- 43. Энергия электростатического поля. Объемная плотность энергии поля.
- 44. Типы диэлектриков. Поляризация диэлектриков и ее виды. Поляризованность диэлектриков. Диэлектрическая восприимчивость и проницаемость. Вектор электрического смещения.
- 45. Свободные и связанные заряды. Теорема Гаусса для поля в диэлектрике. Сегнетоэлектрики. Электрическое поле в однородном диэлектрике.
- 46. Постоянный электрический ток, условия его существования и основные характеристики. Сторонние силы. Понятие ЭДС и напряжения.
- 47. Сопротивление проволочного проводника. Соединения проводников. Температурная зависимость сопротивления и ее качественное объяснение. Сверхпроводимость.
- 48. Закон Ома в интегральной форме для однородного и неоднородного участков цепи, для полной цепи.
- 49. Правила Кирхгофа.
- 50. Закон Джоуля Ленца в интегральной форме. Мощность тока.
- 51. Закон Ома и Джоуля Ленца в дифференциальной форме.
- 52. Электрический ток в металлах. Классическая теория электропроводности. Ток в вакууме. Эмиссия электронов. Газовые разряды.
- 53. Полупроводники. Зонная теория твердого тела. Собственная и примесная проводимость полупроводников. Диод.
- 54. Магнитное поле и его характеристики. Макро- и микротоки. Воздействие магнитного поля на рамку с током и на прямолинейный проводник с током.
- 55. Силовые линии магнитной индукции. Силовая картина магнитного поля прямолинейного проводника с током и кругового витка. Принцип суперпозиции магнитных полей.
- 56. Закон Био Савара Лапласа.
- 57. Воздействие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряда в магнитном поле. Эффект Холла.
- 58. Вихревой характер магнитного поля. Теорема Гаусса и теорема о циркуляции вектора магнитной индукции (в вакууме).
- 59. Намагничивание магнетиков. Напряженность магнитного поля. Магнитная проницаемость и магнитная восприимчивость.
- 60. Диамагнетики, парамагнетики и ферромагнетики.
- 61. Связь векторов \vec{B} и \vec{H} . Закон полного тока для магнитного поля в веществе. Теорема о циркуляции вектора H.
- 62. Электромагнитная индукция. ЭДС индукции в подвижных и неподвижных проводниках. Вращение рамки в магнитном поле. Токи Фуко.
- 63. Самоиндукция. Индуктивность проводника. Закон Ленца. Взаимная индукция. Трансформаторы.
- 64. Работа по перемещению проводника с током в магнитном поле. Энергия магнитного поля в соленоиде. Плотность энергии магнитного поля.
- 65. Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла в интегральной форме.
- 66. Колебательный контур. Преобразование энергии на различных этапах колебания.

- Дифференциальные уравнения свободных незатухающих и затухающих колебаний в нем и их решения.
- 67. Дифференциальное уравнение электромагнитной волны и его решение. Скорость распространения волны. Вектор Умова-Пойнтинга. Энергетические характеристики электромагнитных волн. Шкала электромагнитных волн.

Раздел 4 «Оптика и элементы квантовой механики»

- 68. Оптика. Законы геометрической оптики. Полное внутреннее отражение. Линзы.
- 69. Интерференция света. Условия возникновения интерференции. Метод векторной диаграммы для сложения двух или нескольких волн.
- 70. Принцип получения интерфереционной картины. Условия максимумов и минимумов. Разность фаз и разность хода.
- 71. Интерференция в тонкой пленке. Кольца Ньютона.
- 72. Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля.
- 73. Дифракция на круглом отверстии. Дифракция на длинной щели.
- 74. Дифракционная решетка. Главные максимумы. Главные минимумы. Разрешающая способность.
- 75. Поляризованный свет. Виды поляризации. Способы получения поляризованного света.
- 76. Прохождение естественного света через поляризатор и анализатор. Поворот плоскости поляризации.
- 77. Поляризация света при отражении и преломлении на границе диэлектриков. Закон Брюстера. Двойное лучепреломление.
- 78. Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект.
- 79. Световое давление. Опыты Лебедева. Эффект Комптона.
- 80. Тепловое излучение. Закон Кирхгофа. Абсолютно черное тело. Закон Стефана Больцмана. Закон Вина.
- 81. Тепловое излучение. Формула Планка. Распределение энергии в спектре излучения по частоте и длине волны.
- 82. Модель атома Томсона и Резерфорда-Бора. Опыты Резерфорда по рассеянию альфачастиц. Эмпирические закономерности в атомных спектрах. Теория Бора.
- 83. Уровни энергии атома водорода. Квантовые числа: главное, орбитальное, магнитное.
- 84. Волновые свойства микрочастиц. Длина волны де Бройля и ее свойства. Волновая функция.
- 85. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера.

6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Критерии оценки решения задачи для защиты лабораторных работ, для решения на контрольной работе, для зачета:

- 5 баллов выставляется студенту, если в логически выстроенном решении правильно указаны формулы всех необходимых физических законов
 - с пояснениями, сделаны все необходимые математические преобразования, рисунки (при необходимости), получен правильный ответ;
- **4 балла** выставляется студенту, если в ответе указаны все необходимые физические законы с пояснениями, приведены рисунки (при необходимости), но в пояснениях к физическим законам или в рисунке содержатся неточности, или допущена математические ошибка при решении;

- 3 балла выставляется студенту, если в ответе указаны только необходимые физические законы или рисунки (при необходимости), или в законах и рисунке допущены ошибки;
- 2 балла решение не содержит основной понятийный аппарат по теме задачи.

Для допуска к зачету студент обязан решить итоговую контрольную работу на оценку «зачтено».

Итоговая оценка по контрольной работе «зачтено» или «не зачтено» определяется по среднему баллу по всем задачам варианта контрольной работы:

0 - 2,4 балла – «не зачтено»;

2,5 – 5 баллов – «зачтено».

Для допуска к зачету студент обязан выполнить защиты (включая устный ответ и письменный отчет с представлением результатов экспериментальных исследований) полного цикла лабораторных работ, получить «зачтено».

Критерии оценки вопросов для защиты лабораторных работ:

- «зачтено» выставляется студенту, если в ответе на вопрос правильно указаны все необходимые физические законы и определения с пояснениями, правильно описаны явления или в ответе содержатся незначительные неточности;
- «не зачтено» ответ не содержит основной понятийный аппарат по теме вопроса

Итоговая оценка по защите лабораторной работы «зачтено» или «не зачтено» определяется по среднему баллу решения 3-х задач по теме работы: 2,5 – 5 баллов – «зачтено»; 0 - 2,4 балла – «не зачтено» и ответам с оценкой «зачтено» на вопросы для защиты лабораторной работы. Итоговая оценка по защите лабораторной работы «зачет» соответствует решению задач и ответу на вопросы для защиты лабораторной работы с оценками «зачтено».

Для выполнения и защиты лабораторных работ студенты разбиваются на малые группы по 3 - 5 человек. Каждая группа выполняет на занятии индивидуальную лабораторную работу. При защите лабораторной работы малой группой ответы каждого студента оцениваются по критериям индивидуально.

В случае если студентом освоены компетенции на уровне не «ниже достаточного», он получает «зачтено», в противном случае выставляется «не зачтено».

Зачет по дисциплине: 1 теоретический вопрос и 1 задача.

На зачете студент отвечает на один теоретический вопрос и решает одну задачу. Вопрос и задачу студент выбирает случайно из комплекта предлагаемых ему соответствующих материалов. Итоговая оценка «зачтено» выставляется при решении задачи на 3-5 баллов и ответе на теоретический вопрос с оценкой «зачтено».

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Основная литература

- 1. Трофимова Т.И. Курс физики: учебн. пособие для студ. учреждений высш. образования / Т.И. Трофимова. 23-е изд., стер. М.: Издательский центр «Академия», 2017. 560 с.
- 2. Трофимова Т.И. Сборник задач по курсу физики. Учебное пос. / Т.И. Трофимова. 3-е изд. М.: ООО "Издательский дом "Оникс 21 век", 2003. 384 с.

7.2 Дополнительная литература

- 1. Савельев, И.В. Курс физики: учебное пособие для вузов: в 3 томах / И.В. Савельев. 8-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 1: Механика. Молекулярная физика 2021. 356 с. ISBN 978-5-8114-6796-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152453
- 2. Савельев, И.В. Курс физики: учебное пособие: в 3 томах / И.В. Савельев. 6-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество. Колебания и волны. Волновая оптика 2019. 468 с. ISBN 978-5-8114-4253-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/117715
- 3. Хусаинов, Ш.Г. Курс физики: теория, задачи и вопросы: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2021 464 с. Режим доступа: http://elib.timacad.ru/dl/local/s20210609.pdf.
- 4. Коноплин, Н.А. Физика. Материалы контрольной работы для студентов аграрных направлений подготовки. / Н.А. Коноплин, И.В. Левкин, В.Л. Прищеп; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2021 154 с. Режим доступа: http://elib.timacad.ru/dl/local/s20210715.pdf.
- 5. Хусаинов, Ш.Г. Квантовая физика: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К. А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2020 148 с. Режим доступа: http://elib.timacad.ru/dl/local/s17122020.pdf.
- 6. Хусаинов, Ш.Г. Основы механики и молекулярная физика: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2020 146 с. Режим доступа: http://elib.timacad.ru/dl/local/umo456.pdf.
- 7. Хусаинов, Ш.Г. Электромагнетизм и волны: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-

- MCXA им. К.А. Тимирязева, 2020 168 с. Режим доступа: http://elib.timacad.ru/dl/local/umo457.pdf.
- 8. Коноплин, Н.А. Физика. Материалы для решения контрольной работы. Часть 1: учебно-методическое пособие / Н. А. Коноплин; Российский государственный аграрный университет МСХА имени К. А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2018 215 с. Режим доступа: http://elib.timacad.ru/dl/local/umo315.pdf.
- 9. Коноплин, Н.А. Физика. Материалы для решения контрольной работы. Часть 2: учебно-методическое пособие / Н.А. Коноплин; Российский государственный аграрный университет МСХА имени К. А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2020 183 с. Режим доступа: http://elib.timacad.ru/dl/local/umo449.pdf.
- 10. Механика: методические указания / В.Л. Прищеп [и др.]; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2018 61 с. Режим доступа: http://elib.timacad.ru/dl/local/umo214.pdf.

7.3 Нормативные правовые акты

Не предусмотрено.

7.4 Методические указания, рекомендации и другие материалы к занятиям

Для проведения лабораторных работ рекомендуется использовать методические указания:

- 1. Механика: методические указания / В.Л. Прищеп [и др.]; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2018 61 с. Режим доступа: http://elib.timacad.ru/dl/local/umo214.pdf.
- 2. Коноплин, Н. А. Погрешности физических измерений / Н. А. Коноплин, С. А. Маринова, М. В. Шестаков. Москва: Российский государственный аграрный университет МСХА им. К.А. Тимирязева, 2022. 35 с. Режим доступа: http://elib.timacad.ru/dl/full/s08122022konoplin.pdf.
- 3. Башлачев В. А., Быстров Г. С., Дмитриев Г. В., Ершов А. П. Механика часть І: методические указания по выполнению лабораторных работ. М.: Φ ГБОУ ВПО МГАУ, 2013. 44с.
- 4. Башлачев В. А., Быстров Г. С., Дмитриев Г. В., Ершов А. П., Туркин А. В. Механика. Методические указания по выполнению лабораторных работ. Ч. II / Под общей ред. А. В. Туркина. М.: ФГБОУ ВПО МГАУ, 2013.-48 с.
- 5. Быстров Г. С., Ершов А. П., Храмшина Э. В. Электричество. Методические указания к лабораторным работам. Ч. І. М.: ВНИИГиМ имени А.Н.Костякова, 2016.-48 с.

- 6. Быстров Г. С., Николаев С.Н., Храмшина Э. В. Электромагнетизм. Методические указания к лабораторным работам по физике. Ч. II. М.: ВНИИГиМ имени А.Н.Костякова, 2016.-60 с.
- 7. Башлачев В. А., Быстров Г. С., Дмитриев Г. В., Ершов А. П., Туркин А. В., Челноков Б. И. Оптика и атомная физика. Методические указания по выполнению лабораторных работ. Ч. II / Под общей ред. А. В. Туркина, Г. В. Дмитриева. М.: ФГБОУ ВПО МГАУ, 2013.-50 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

http://fizik.bos.ru/ - Сайт посвящен курсу физики общеобразовательной школы.

9. Перечень программного обеспечения и информационных справочных систем

Не предусмотрено

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 8

Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

каоинетами, лаоораториями								
Наименование специальных помещений и помещений для самостоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и помещений для самостоятельной работы							
Учебная лаборатория,	1. Стол 21 шт.							
аудитория для проведения	2. Стулья 39 шт.							
групповых и индивидуальных	3. Доска меловая 1 шт.							
консультаций, текущего	4. Шкафы 2 шт.							
контроля и промежуточной	5. Типовой комплект оборудования лаборатории							
аттестации	«Молекулярная физика и термодинамика» 1 шт.							
(Учебный корпус № 28,	(инв.№410124000603107)							
ауд. 301а)	6. Типовой комплект оборудования лаборатории							
	«Физические основы механики» 1 шт. (инв.							
	№410124000603116)							
Учебная аудитория для	1. Парты 23 шт.							
проведения занятий	2. Стулья 1шт.							
семинарского типа, групповых и	3. Стол 1 шт.							
индивидуальных консультаций,	4. Доска меловая 1шт.							
текущего контроля и	5. Шкафы 1 шт.							
промежуточной аттестации								
(Учебный корпус № 28,								
ауд. 301б)								
Учебная лаборатория,	1. Столы 20 шт.							
аудитория для проведения	2. Стулья 29 шт.							
групповых и индивидуальных	3. Доска меловая 1 шт.							

Наименование специальных помещений и помещений для самостоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и помещений для самостоятельной работы
консультаций, текущего контроля и промежуточной аттестации (Учебный корпус № 28, ауд. 302)	 4. Шкафы 1 шт. 5. Типовой комплект оборудования лаборатории «Волновые процессы» 1 шт. (инв.№ 410124000603118) 6. Типовой комплект оборудования лаборатории «Электричество и магнетизм» 1 шт. (инв.№ 410124000603235)
Учебная аудитория для проведения занятий лекционного типа (Учебный корпус № 28, ауд. 304)	 Стол 1 шт. Парты 70 шт. Стулья 1шт. Доска меловая 1 шт. Кафедра 1 шт. Экран 1 шт. Проектор 1 шт.
Учебная лаборатория, аудитория для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (Учебный корпус № 28, ауд. 337) Учебная лаборатория, аудитория для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (Учебный корпус № 28, ауд. 336)	 Парты 17 шт. Стулья 35 шт. Доска меловая 1 шт. Шкафы 1 шт. Типовой комплект оборудования лаборатории «Квантовая физика» 1 шт. (инв.№ 410124000603114) Установка для экспер. изуч. законов тепл. изл. 1 шт. (инв.№ 410134000000313) Парты 20 шт. Стулья 34 шт. Доска меловая 1 шт. Шкафы 1 шт. Типовой комплект оборудования для лаборатории «Квантовая физика» 1 шт. (инв. № 410124000603113)
Учебная лаборатория, аудитория для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (Учебный корпус № 28, ауд. 335)	 Парты 16 шт. Стулья 34 шт. Доска меловая 1 шт. Шкафы 1 шт. Типовой комплект оборудования лаборатории «Волновые процессы» 1 шт. (инв.№ 410124000603117) Типовой комплект оборудования лаборатории «Электричество и магнетизм» 1 шт. (инв.№ 410124000603236)
Учебная лаборатория, аудитория для проведения групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (Учебный корпус № 28, ауд. 332)	 Столы 9 шт. Стулья 21 шт. Типовой комплект оборудования лаборатории «Физические основы механики» 1 шт. (инв. №410124000603115)

Наименование специальных помещений и помещений для самостоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и помещений для самостоятельной работы
Учебная лаборатория,	1. Стол 11 шт.
аудитория для проведения	2. Стулья 21 шт.
групповых и индивидуальных	3. Типовой комплект оборудования лаборатории
консультаций, текущего	«Физические основы механики» 1 шт. (инв.
контроля и промежуточной	№410124000603115) 4. Типовой комплект оборудования лаборатории
<i>аттестации</i> (Учебный корпус № 28,	4. Типовой комплект оборудования лаборатории «Молекулярная физика и термодинамика» 1 шт.
ауд. 333)	(инв.№ 410124000603106)
Учебная лаборатория,	1. Лабораторные столы 18 шт.
аудитория для проведения	2. Стол 1 шт.
групповых и индивидуальных	3. Стулья 45 шт.
консультаций, текущего	4. Доска меловая 1 шт.
контроля и промежуточной	5. Шкафы 3 шт.
аттестации	6. Типовой комплект оборудования лаборатории
(Учебный корпус № 28,	«Волновые процессы» 1 шт. (инв.№ 410124000603117)
ауд. 306а)	7. Типовой комплект оборудования лаборатории
	«Электричество и магнетизм» 1 шт. (инв.№
	410124000603236)
	8. Типовой комплект оборудования лаборатории
	«Квантовая физика» 1 шт. (инв.№ 410124000603113)
Учебная лаборатория,	1. Парты 27 шт.
аудитория для проведения	2. Стулья 57 шт.
групповых и индивидуальных	3. Доска меловая 1 шт.
консультаций, текущего	4. Шкафы 3 шт.
контроля и промежуточной	5. Типовой комплект оборудования лаборатории
<i>аттестации</i> (Учебный корпус № 28,	«Молекулярная физика и термодинамика» 1 шт. (инв.№ 410124000603106)
ауд. 306б)	6. Типовой комплект оборудования лаборатории
ayd. 2000)	«Физические основы механики» 1 шт. (инв. №
	410124000603115)
Учебная аудитория для	1. Лабораторные столы 15 шт.
проведения занятий	2. Стол для преподавателя 1 шт.
семинарского типа, аудитория	3. Стулья 47 шт.
для проведения групповых и	4. Доска меловая 2 шт.
индивидуальных консультаций,	5. Шкафы 1 шт.
текущего контроля и промежуточной аттестации	
промежуточной аттестиции (Учебный корпус № 28,	
ауд. 307)	
Центральная научная	
библиотека имени Н.И.	
Железнова, читальные залы	
библиотеки	
Общежитие. Комната для	
самоподготовки	

11. Методические рекомендации студентам по освоению дисциплины

После каждой лекции требуется самостоятельная проработка изложенного материала. Перед занятием по выполнению лабораторной работы необходимо подготовить конспект работы, внимательно изучив содержание методических указаний, и запомнить порядок выполнения, повторить теоретический материал по теме.

Виды и формы отработки пропущенных занятий

Студент, пропустивший <u>лекцию</u>, должен отработать теоретический материал по соответствующей теме самостоятельно.

Студент, пропустивший <u>лабораторную работу</u>, обязан ее отработать (выполнить), рассчитать и защитить.

12. Методические рекомендации преподавателям по организации обучения по дисциплине

Для более успешного освоения дисциплины «Физика» рекомендуется сначала давать студентам лекционный материал, а затем закреплять его виде лабораторных занятий.

Изучение курса складывается из лекций, лабораторных занятий и самостоятельной работы студентов.

На лекциях освещаются основополагающие вопросы программы. Часть разделов выносится на самостоятельную проработку.

Лабораторные работы наглядно демонстрируют физические законы и явления, формируют навыки экспериментальной работы.

Программу разработала:

Разработчик: Маринова С.А., к. фм. н			
	«	»	2023 г.

11. Методические рекомендации студентам по освоению дисциплины

После каждой лекции требуется самостоятельная проработка изложенного материала. Перед занятием по выполнению лабораторной работы необходимо подготовить конспект работы, внимательно изучив содержание методических указаний, и запомнить порядок выполнения, повторить теоретический материал по теме.

Виды и формы отработки пропущенных занятий

Студент, пропустивший <u>лекцию</u>, должен отработать теоретический материал по соответствующей теме самостоятельно.

Студент, пропустивший <u>лабораторную работу</u>, обязан ее отработать (выполнить), рассчитать и защитить.

12. Методические рекомендации преподавателям по организации обучения по дисциплине

Для более успешного освоения дисциплины «Физика» рекомендуется сначала давать студентам лекционный материал, а затем закреплять его виде лабораторных занятий.

Изучение курса складывается из лекций, лабораторных занятий и самостоятельной работы студентов.

На лекциях освещаются основополагающие вопросы программы. Часть разделов выносится на самостоятельную проработку.

Лабораторные работы наглядно демонстрируют физические законы и явления, формируют навыки экспериментальной работы.

Программу разработала:

Разработчик: Маринова С.А., к. ф.-м. н

29

РЕЦЕНЗИЯ

на рабочую программу дисциплины Б1.О.09 «Физика» ОПОП ВО по направлению 36.03.02 Зоотехния, направленности «Технология производства продуктов животноводства (по отраслям)», «Кормление животных и технология кормов» (квалификация выпускника – бакалавр)

Понизовкиным Дмитрием Андреевичем, доцентом кафедры техносферной безопасности ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», кандидатом технических наук (далее по тексту рецензент), проведено рецензирование рабочей программы дисциплины «Физика» ОПОП ВО по направлению 36.03.02 Зоотехния, направленности «Технология производства продуктов животноводства (по отраслям)», «Кормление животных и технология кормов» (бакалавриат) разработанной в ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», на кафедре физики (разработчик — Маринова Софья Андреевна, доцент кафедры физики, кандидат физико-математических наук).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

- 1. Предъявленная рабочая программа дисциплины «Физика» (далее по тексту Программа) <u>соответствует</u> требованиям ФГОС ВО по направлению 36.03.02 Зоотехния. Программа <u>содержит</u> все основные разделы, <u>соответствует</u> требованиям к нормативнометодическим документам.
- 2. Представленная в Программе *актуальность* учебной дисциплины в рамках реализации ОПОП ВО *не подлежит сомнению* дисциплина относится к обязательной части учебного цикла Б1.О.
- 3. Представленные в Программе *цели* дисциплины *соответствуют* требованиям ФГОС ВО направления 36.03.02 Зоотехния.
- 4. В соответствии с Программой за дисциплиной «Физика» закреплены 2 компетенции (5 индикаторов). Дисциплина «Физика» и представленная Программа способна реализовать их в объявленных требованиях.
- 5. **Результаты** обучения, представленные в Программе в категориях знать, уметь, владеть <u>соответствуют</u> специфике и содержанию дисциплины и <u>демонстрируют</u> возможность получения заявленных результатов.
- 6. Общая трудоёмкость дисциплины «Физика» составляет 2 зачётных единицы (72 часа).
- 7. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин <u>соответствует</u> действительности. Дисциплина «Физика» взаимосвязана с другими дисциплинами ОПОП ВО и Учебного плана по направлению 36.03.02 Зоотехния и возможность дублирования в содержании отсутствует.
- 8. Представленная Программа предполагает использование современных образовательных технологий, используемых при реализации различных видов учебной работы. Формы образовательных технологий *соответствуют* специфике дисциплины.
- 9. Виды, содержание и трудоёмкость самостоятельной работы студентов, представленные в Программе, <u>соответствуют</u> требованиям к подготовке выпускников, содержащимся во ФГОС ВО направления 36.03.02 Зоотехния.
- 10. Представленные и описанные в Программе формы *текущей* оценки знаний *соответствуют* специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний студентов, предусмотренная Программой, осуществляется в форме зачета с оценкой, что <u>соответствует</u> статусу дисциплины, как дисциплины обязательной части учебного цикла — B1.O. ФГОС ВО направления 36.03.02 Зоотехния.

11. Формы оценки знаний, представленные в Программе, *соответствуют* специфике дисциплины и требованиям к выпускникам.

- 12. Учебно-методическое обеспечение дисциплины представлено: основной литературой 2 источника (базовый учебник и сборник задач), дополнительной литературой 10 наименований и <u>соответствует</u> требованиям ФГОС ВО направления 36.03.02 Зоотехния.
- 13. Материально-техническое обеспечение дисциплины соответствует специфике дисциплины «Физика» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.
- 14. Методические рекомендации студентам и методические рекомендации преподавателям по организации обучения по дисциплине дают представление о специфике обучения по дисциплине «Физика».

ОБЩИЕ ВЫВОДЫ

На основании проведенного рецензирования можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины «Физика» ОПОП ВО по направлению 36.03.02 Зоотехния, направленностям «Технология производства продуктов животноводства (по отраслям)», «Кормление животных и технология кормов» (квалификация выпускника — бакалавр), разработанная Мариновой Софьей Андреевной, доцентом кафедры физики, кандидатом физико-математических наук, соответствует требованиям ФГОС ВО, современным требованиям экономики, рынка труда и позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Рецензент: Понизовкин Дмитрий Андреевич, доцент кафедры техносферной безопасности ФГБОУ ВО «Российский государственный аграрный университет – МСХА имсни

К.А. Тимирязева», кандидат технических наук

<u>3/</u>» _____08

2023 г.