Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Макаров Алексей Владимирович

Должность: И.о. директора технологического колледжа

Дата подписания: 25.03.2024 11:48:35 Уникальный программный ключ:

Приложение к ППССЗ

7f14295cc243663512787ff1135f9c1203eca75d Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский государственный аграрный университет – MCXA имени К.А. Тимирязева» (ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева) ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА

по дисциплине «ОП.09 Электрические машины и приводы»

специальность: 15.02.10 Мехатроника и мобильная робототехника (по отраслям)

форма обучения: очная

Содержание

1 Общие положения				• • • • • • • • • • • • • • • • • • • •	 3
2Результаты освоения дист	циплины, подл	ежащие	е проверке		 3
3 Контрольно-оценочные аттестации	1		•	_	1

1. Общие положения

1.1. Цели и задачи контроля

Целью текущего контроля успеваемости обучающихся является обеспечение систематического контроля и оценки уровня освоения предметных результатов, уровня сформированности общих и профессиональных компетенций ОП.09 Электрические машины и электроприводы.

Главной задачей текущего контроля успеваемости является повышение мотивации обучающихся к регулярной учебной и самостоятельной работе, закрепление, углубление знаний, закрепление и совершенствование умений, обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности посредством внедрения эффективной системы оценки в образовательный процесс.

2. Результаты освоения дисциплины, подлежащие проверке

- В рамках программы учебной дисциплины обучающимися осваиваются следующие знания:
- последовательность пуско-наладочных работ мехатронных систем;
- технологию проведения пуско-наладочных работ мехатронных систем
- понятие, цель и виды технического обслуживания;
- технологическую последовательность разборки, ремонта и сборки узлов и механизмов мехатронных систем

В рамках программы учебной дисциплины обучающимися осваиваются следующие умения:

- производить пуско-наладочные работы мехатронных систем
- заполнять маршрутно-технологическую документацию на обслуживание отраслевого оборудования мехатронных систем

Профессиональные компетенции, включающие в себя способность:

- ПК 1.4. Выполнять работы по наладке компонентов и модулей мехатронных систем в соответствии с технической документацией
- ПК 2.1. Осуществлять техническое обслуживание компонентов и модулей мехатронных систем в соответствии с технической документацией.

- 3. Контрольно-оценочные материалы для текущего контроля и промежуточной аттестации
- 3.1 Задания для текущего контроля
- 1. Обмотка двигателя ... возбуждения соединяется параллельно и последовательно

Смешенного

- 2. Электропривод состоит из каких основных частей, как:
- а) Механическая и динамическая
- б) Силовая часть и система управление +
- в) Система регулирования
 - 3. Характеристики называют естественными, если:
- а) Они получены при не нормальных условиях питание
- б) Они получены при относительных условиях питание
- в) Они получены при номинальных условиях питания +
 - 4. Многодвигательный электропривод:
- а) Электропривод, который состоит из нескольких одиночных электроприводов, каждый из которых предназначен для приведения в действие отдельных элементов производственного агрегата +
- б) Трансмиссионный электропривод
- в) Электропривод, который с помощью одного электродвигателя приводит в движение отдельную машину
- 5. Обмотка возбуждения двигателя постоянного тока создает магнитное поле и

поток

6. Динамическое торможение ещё называется

реостатное

7. Характеристики двигателя называются искусственными при изменении номинальных ... параметров.

питающих

8. Экономичность регулируемого привода характеризуется ... на его сооружения и эксплуатацию

затратами

- 9. Как соединяется обмотка возбуждения двигателя с независимым возбуждением:
- а) Соединяется только генераторам
- б) Соединяется только параллельном виде
- в) Соединяется к отдельному источнику питания +
- 10. Плавность регулирования характеризуется числом ... скоростей устойчивых
- 11. Для уменьшения скорости двигателя увеличивают сопротивление ... цепи. якорной
- 12. Диапазон регулирования зависит от

нагрузки

- 13. Что определяют методом эквивалентного момента:
- а) Мощность двигателя +

- б) Ток
- в) Сопротивления
 - 14. Реактивные моменты всегда направлены ... движения.

против

- 15. Для чего нужен метод эквивалентного тока:
- а) Момента +
- б) Сопротивления
- в) Для определения мощности
 - 16. В каком году и кто построил однофазный синхронный электродвигатель:
- а) В 1876 году П.Н. Яблочков
- б) В 1841 году англичанин Ч. Уитсон +
- в) В 1888 году итальянцем Г. Феррари Сом
 - 17.Понижающий трансформатор ... повысить напряжение сети

может

18. Расширитель трансформатора ... полностью заполнить минеральным трансформаторным маслом.

нельзя

19. Генератор постоянного тока смешанного возбуждения это генератор, имеющий параллельную и ... обмотки возбуждения.

последовательную

20. Реостат в цепи обмотки возбуждения двигателя постоянного тока регулирует ... вращения.

скорость

- 21. Из чего состоит передаточное устройство:
- а) Из механической передачи;
- б) Информационное устройство
- в) Из механической передачи и устройства сопряжения +
 - 22. Многодвигательный электропривод:
- а) Механическая связь между которыми осуществляется через исполнительный орган
- б) Исполнительный орган рабочей машины +
- в) Два или несколько электрически или механически связанных между собой электроприводов
 - 23. Какие режимы работы электрических двигателей знаете:
- а) Продолжительный, кратковременный, повторно-кратковременный +
- б) Постоянный, переменный, продолжительный
- в) Переменный, тормозной
 - 24. Основной функцией электропривода является:
- а) Движущийся элемент рабочей машины, выполняющий технологическую операцию
- б) Приведение в движение рабочей машины в соответствии с требованиями технологического режима $^{+}$
- в) Механическая связь между которыми осуществляется через исполнительный орган
- 25. Если поменять полюсь якорной цепи двигателя постоянного тока (+,-, на -,+,) что произойдет:
- а) Двигатель не будет вращаться
- б) Двигатель остановится
- в) Двигатель работает в реверсивном режиме (вращается наоборот) +

26. Сколько групп различают в механизме:

- a) 6
- 6)5 +
- в) 2

27. Что нужно сделать чтобы двигатель смешенного возбуждения работал в режиме против включения:

- а) Надо уменьшить напряжения
- б) Отключают полюса двигателя
- в) Якорную цепь обратно включают сеть питания +
 - 28. Двигатель последовательным возбуждение:
- а) Без обмоток
- б) Обмотка последовательным возбуждением +
- в) Обмотка параллельным возбуждением
- 29. В момент замыкания электрической цепи, содержащей катушку, появится индукционный ток, препятствующий установлению

тока

30. Для наблюдения явления электромагнитной индукции собирается электрическая схема, включающая в себя подвижную проволочную катушку, подсоединенную к амперметру и неподвижный магнит. Индукционный ток в катушке возникнет если катушка надевается на ... или снимается с магнита.

магнит

31. ... использует явление возникновения тока при движении проводника в магнитном поле.

электрогенератор

- 32. Какие методы изменения скорости двигателя постоянного тока знаете:
- а) Магнитный поток, напряжения, параметры управления +
- б) Ток, сопротивление
- в) Момент, ток, напряжения
 - 33. Двигатели смешенного возбуждения какие обмотки имеет:
- а) Независимого возбуждения
- б) Последовательного возбуждения
- в) Параллельного и последовательного возбуждения +
 - 34. Какие режимы работы асинхронного двигателя знаете:
- а) Рекуперативный, динамический, против включения +
- б) Динамический
- в) Рекуперативный, тормозной
- 35. Что нужно сделать, чтобы двигатель смешенного возбуждения работал в режиме против включения:
- а) Отключают полюса двигателя
- б) Якорную цепь обратно включают в сеть питания +
- в) Отключают двигатель от питания
 - 36. Работа трансформатора основана на явлении

заимоиндукции

37.Обмотка трансформатора, которую подключают к источнику переменного напряжения, называется

первичной

38.Обмотку низшего напряжения трансформатора делают из железных ... сечения

стержней

- 39. Трансформатор будет понижающим, если ...
- a) U1 >U2;
- б) E1 =E2;
- в) U1 <U2+
- г) U1>E1
- 40.Передавать электроэнергию целесообразно при ... напряжении

низком

- 39. Трансформаторы нашли широкое применение ...
- а) в линиях электропередачи;
- б) в технике связи;
- в) в автоматике и измерительной технике;
- г) во всех перечисленных областях.+
- 40. Назовите основную причину, по которой в мощных синхронных машинах не применяется «обращенная конструкция»?
 - а) Конструктивная сложность подключения статорной обмотки.
 - б) Конструктивная сложность подключения роторной обмотки.
 - в) Большие потери энергии на щетках. +
 - г)Уменьшение вращающего момента на валу.

Критерии оценки результатов выполнения тестового задания

Оценка	Количество правильных ответов на вопросы в % соотношении от общего числа вопросов
Оценка 5 «отлично»	90-100%
Оценка 4 «хорошо»	76-89%
Оценка 3 «удовлетворительно»	50-75%
Оценка 2 «неудовлетворительно»	≤ 49%

3.2 Варианты заданий для промежуточной аттестации

Вопросы для собеседования

- 1. Классификация электрических машин. Роль электрических машин в системах автоматического управления.
- 2. Устройство, принцип действия и рабочие процессы однофазных трансформаторов. КПД, коэффициент мощности однофазных трансформаторов.
- 3. Устройство и принцип действия трёхфазных трансформаторов. Схемы соединения обмоток.
- 4. Параллельная работа трансформаторов. Распределение нагрузки между двумя параллельно работающими трансформаторами.
- 5. Устройство и принцип действия автотрансформаторов и трёхобмоточных трансформаторов.
- 6. Переходные процессы в трансформаторах.
- 7. Разновидности трансформаторов специального назначения и их устройство.
- 8. Основные принципы действия асинхронных и синхронных машинпеременного тока.
- 9. Асинхронные генераторы и двигатели. Синхронные генераторы и двигатели.
- 10. Режимы работы и устройство асинхронной машины. Рабочий процесс трёхфазного асинхронного двигателя.
- 11. Уравнения напряжений и токов. Магнитная цепь, электромагнитный момент и рабочие характеристики асинхронных двигателей.
- 12. Пуск и регулирование частоты вращения асинхронных двигателей. Коэффициент скольжения.
- 13. Однофазные и конденсаторные асинхронные двигатели.
- 14. Отличительные конструктивные особенности синхронных и асинхронных машин. Способы возбуждения синхронных машин.
- 15. Явнополюсные и неявнополюсные асинхронные машины. Параллельная работа синхронных генераторов.
- 16. Синхронные двигатели и компенсаторы. Основные характеристики синхронных двигателей. Особенности пуска асинхронного двигателя.
- 17. Основные типы машин переменного тока специального назначения. Применение машин переменного тока специального назначения.
- 18. Основные характеристики машин переменного тока специального назначения.

- 19. Основные принципы действия машин постоянного тока. Устройство машин постоянного тока. Коллектор и его назначение.
- 20. Принцип выполнения и выбор типа обмотки якоря. Электромагнитный момент.
- 21. Магнитное поле машин постоянного тока. Основные характеристики машин постоянного тока.
- 22. Способы возбуждения машин постоянного тока. Коммутация в машинах постоянного тока.
- 23. Влияние коммутации на рабочие характеристики машин постоянного тока.
- 24. Способы и методы улучшения коммутации в машинах постоянного тока.
- 25. Генераторы постоянного тока. Типы возбуждения генераторов.
- 26. Характерные особенности работы генераторов с независимым, параллельным или смешанным возбуждением.
- 27. Двигатели постоянного тока. Магнитоэлектрические двигатели и область их применения. Двигатели электромагнитные.
- 28. Характерные особенности работы шунтовых, сериесных и компаудных двигателей. Графики рабочих характеристик.
- 29. Основные типы машин постоянного тока специального назначения. Применение машин постоянного тока специального назначения.
- 30. Основные характеристики машин постоянного тока специального назначения.

Примерные практические задания:

Задание 1. Используя приведенное в табл. 1 значения параметров трехфазных масляных трансформаторов серии ТМ (в обозначении марки в числителе указано номинальная мощность трансформатора в кВ·А, в знаменателе — высшее напряжение в кВ), определить для каждого варианта значения параметров, величины которых не указаны в этой таблице. Обмотки соединены по схемам Y/Y. Частота тока в сети f-50 Γ ц.

Задание 2. Однофазный двухобмоточный трансформатор имеет номинальные напряжения: первичное 6,3 кВ, вторичное 0,4 58 кВ; максимальное значение магнитной индукции в стержне магнитопровода 1,5 Тл; площадь поперечного сечения этого стержня 200 см2; коэффициент заполнения стержня сталью kc = 0,95. Определить число витков в обмотках трансформатора и коэффициент трансформации, если частота переменного тока в сети f = 50 Гц.

Таблица 1

Основные параметры трехфазных масляных трансформаторов серии ТМ

	The state of the s
Параметр	Тип трансформатора

	TM – 1000/35	TM – 50/6	TM – 100/6	TM – 180/	TM – 320/ 6	TM - 560/35	TM - 750/35	TM – 1000/	TM – 10/6	
1	2	3	4	5	6	7	8	9		10
Основной магнитный поток Фтах, Вб	-	-	-	-	-	-	-	-		-
Число витков w ₁	1600	1190	-	-	522	2000	-	-		-
Число витков w ₂	-	-	72	-	-	-	146	-		-
Сечение стержня магнитопровода Qcт, м 2 , при Bmax = 1,5 Тл	-	-	-	-	-	-	-	-		-
Напряжение U ₁ ном, кВ	35	6	6	6	6	35	35	6		6
Напряжение U ₂ ном, кВ	-	0,4	0,5	0,5	0,4	-	3,15	0,4		0,4
Коэффициент трансформации k	5,56	-	-	-	-	5,55	-	-		-

Критерии оценки результатов выполнения теоретического задания	Баллы в соответствии с критериями оценки Максимальный балл – 2,0
 Демонстрирует глубокое, полное знание и понимание программного материала. Последовательно, самостоятельно раскрывает основное содержание вопроса. Выводы аргументированы, основаны на самостоятельно выполненном анализе, обобщении данных. Четко и верно даны определения понятий и научных терминов. Дает верные, самостоятельные ответы на вопросы. 	2,0
 Демонстрирует недостаточно глубокое, полное знание и понимание программного материала. Недостаточно последовательно, но самостоятельно раскрывает основное содержание вопроса. Выводы основаны на самостоятельно выполненном анализе, обобщении данных, но в отдельных случаях недостаточно аргументированы. Недостаточно четко и верно даны определения понятий и научных терминов. При ответе на вопросы допускает несущественные ошибки, которые может исправить самостоятельно. 	1,5
3 Демонстрирует в отдельных вопросах, неглубокое владение знаниями программного материала. Излагает программный материал фрагментарно, не всегда последовательно. Допущены ошибки и неточности в использовании научной терминологии. При ответе на вопросы допускает неточности.	0,8
4 Студент демонстрирует незнание и непонимание программного материала. Основное содержание учебного материала не раскрыто; допущены грубые ошибки в определении понятий, при использовании терминологии. Затрудняется отвечать на вопросы, при ответе допускает серьезные ошибки.	0
Итого	2

No	Критерии оценки к практическим задачам	Баллы за критерии оценки
1	Определить число витков в обмотках трансформатора	Максимальный балл – 1,6
		балла
	Верно определено число витков в обмотках трансформатора	1,6
	число витков в обмотках трансформатора определено с незначительной ошибкой	0,8
	Неверно определено число витков в обмотках трансформатора	0
2	Определить коэффициент трансформации	Максимальный балл – 0,8
		балла
	Верно определен коэффициент трансформации	0,6
	Коэффициент трансформации определен с незначительной	0,3
	ошибкой	

	Неверно определен коэффициент трансформации	0
3	Устное объяснение практического задания	Максимальный балл – 0,6 балла
	- объяснение задания последовательно, связно, логично, вывод аргументирован и обоснован; правильно и	0,6
	обстоятельно дается ответ (ответы) на сопутствующие вопрос (вопросы)	
	- незначительно нарушена последовательность, логика объяснения задания, выводы аргументированы и	0,3
	обоснованы; студент испытывает незначительные затруднения, отвечая на сопутствующие вопросы	
	- значительно нарушена последовательность, логика объяснения задания (студент не может объяснить, каким образом пришел к решению задания), выводы не могут	0
	считаться аргументированными и обоснованными; студент испытывает значительные затруднения, отвечая на сопутствующие вопросы	
	ИТОГО	3