Документ подписан простой электронной подписью Информация о владельце:

НикоминиСТЕРСТВО СЕЛЬ СКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ учебночиетодического управления и за 16.63 РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ — ФИО: Мартех

МСХА имени К.А. ТИМИРЯЗЕВА»

376f4794d4f8dc3853 (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева) 8e989d2f592

> Институт механики и энергетики имени В.П. Горячкина Кафедра «Сопротивление материалов и детали машин»

> > УТВЕРЖДАЮ бно-

И.о. начальника управления УМУ

Матвеев

«16» сентября 2022

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ ДИСЦИПЛИНЫ Б1.О.12 ТЕОРИЯ МЕХАНИЗМОВ И МАШИН

для подготовки специалистов

Специальность: 23.05.01 — Наземные транспортно-технологические средства

Специализация: Автомобильная техника в транспортных технологиях, Технические средства природообустройства и защиты в чрезвычайных ситуациях

Kypc 2

Семестр 4

Форма обучения: очная

Разработчик:	
Серов Н.В., к.т.н.,	доцент

«27» августа 2022 г.

Рецензент Петровский Д.И., к.т.н., доцент

«27» августа 2022 г.

Методические указания в соответствии с требованиями ФГОС ВО профессионального стандарта и учебного плана по специальности 23.05.01 — Наземные транспортно-технологические средства и комплексов

Методические указания обсуждены на заседании кафедры сопротивления материалов и деталей машин протокол № 1 от «28» августа 2022 г.

Заведующий кафедрой Казанцев С.П., д.т.н., профессор

«28» августа 2022 г.

Согласовано:

Старший методист методического отдела УМУ

И.Л. Калабина

«18» сентября 2022 г.

И.о. директора института механики и энергетики имени В.П. Горячкина <u>Парлюк Е.П., д.т.н., доцент</u>

«17» сентября 2022 г.

/Председатель учебно-методической комиссии института механики и энергетики имени В.П. Горячкина

Дидманидзе О.Н., академик РАН, д.т.н., профессор протокол №2 от «15» сентября 2022 г.

«15» сентября 2022 г.

СОДЕРЖАНИЕ

Аннотация	4
1. Цель и задачи курсовой работы	4
2. Перечень планируемых результатов выполнения курсовой работы по дисциплине (модулю), соотнесённых с планируемыми результатами освоения образовательной программы	4
3. Структура курсовой работы	5
4. Порядок выполнения курсовой работы	8
5. Требования к оформлению курсовой работы	25
6. Порядок защиты курсовой работы	31
7. Учебно-методическое и информационное обеспечение курсовой работы	33
8. Методическое, программное обеспечение курсовой работы	34

АННОТАЦИЯ

курсовой работы учебной дисциплины Б1.О.12 «ТЕОРИЯ МЕХАНИЗМОВ И МАШИН»

для подготовки специалистов

по специальности 23.05.01 – Наземные транспортно-технологические средства, специализация: Автомобильная техника в транспортных технологиях, Технические средства природообустройства и защиты в чрезвычайных ситуациях

Курсовая работа по дисциплине «Теория механизмов и машин» для подготовки специалистов по специальности 23.05.01 «Наземные транспортнотехнологические средства», специализация «Автомобильная техника в транспортных технологиях, Технические средства природообустройства и защиты в чрезвычайных ситуациях» одна из первых самостоятельных инженерных работ студента, завершающая общеобразовательный цикл обучения. При выполнении работы используются знания, полученные при изучении таких дисциплин, как, высшая математика, теоретическая механика, физика и др.

Объектами анализа курсовой работы является изучение строения, кинематики и динамики простейшей машины с зубчатым приводом и исполнительным кривошипно—ползунным механизмом, установление общих принципов, по которым строится и формируется механизм, разработка научных положений и технических приёмов синтеза и анализа схем механизмов.

Выполняется курсовая работа в процессе изучения дисциплины «Теория машин и механизмов».

Курсовая работа имеет проектный и аналитический характер

1.Цель и задачи курсовой работы

Выполнение курсовой работы по дисциплине Б1.О.12 «Теория механизмов и машин» для специальности 23.05.01 «Наземные транспортно-технологические средства», специализация «Автомобильная техника в транспортных технологиях, Технические средства природообустройства и защиты в чрезвычайных ситуациях» проводится с целью формирование у студентов навыков практического применения графо—аналитических методов с применением цифровых инструментов Kahoot, Moodle, Komnac-3D, SimInTech, в том числе обработки и интерпретации информации с помощью современных программных продуктов Excel, Power Point и осуществлять коммуникации посредством Webinar, Zoom, Mentimeter.

Курсовая работа позволяет решить следующие задачи:

- 1) построения кинематической схемы кривошипно-ползунного механизма в заданном положении;
- 2) кинематического расчёта редуктора;
- 3) построения планов скоростей и ускорений в заданном положении механизма;
- 4) построения кинематической схемы с указанием внешних действующих сил, включая силы инерции звеньев;
- 5) выделения групп Ассура с указанием внутренних сил в кинематических парах;

- 6) определения уравновешивающей силы, приложенной к кривошипу, методом плана сил;
- 7) определение уравновешивающей силы графическим способом с помощью рычага Жуковского;
- 8) оценки уравновешивающей силы, найденной разными способами;
- 9) оценки мощности электродвигателя с учётом заданного КПД редуктора.

2. Перечень планируемых результатов выполнения курсовой работы по дисциплине Б1.О.12 «Теория механизмов и машин», соотнесённых с планируемыми результатами освоения образовательной программы

Реализация в курсовой работе по дисциплине «Теория механизмов и машин» требований ФГОС ВО, ОПОП ВО и Учебного плана по специальности 23.05.01 «Наземные транспортно-технологические средства», специализация «Автомобильная техника в транспортных технологиях, Технические средства природообустройства и защиты в чрезвычайных ситуациях» должна формировать следующие компетенции, представленные в таблице 1.

3. Структура курсовой работы

По объёму курсовой работы должен быть не менее 15 страниц печатного текста в редакторе Word. Шрифт 14 пт, межстрочный интервал 1,5. Предлагаемая структура курсового проекта: 1) Титульный лист 1 ст.; 2) Задание на выполнение курсовой работы 1 ст.; 3) Содержание не менее 1 ст.; 4) Аннотация не более 1 ст.; 5) Цель и задачи курсовой работы 1 ст.; 6) Расчётное— конструкторская часть не менее 13 ст.; 7) Библиографический список не менее 5 источников 1 ст.

Графическая часть выполняется традиционно на листе формата A1 или в электронном виде, например, с применением программного продукта Компас-3D Kahoot, Moodle, SimInTech; пояснительная часть (записка) на листах A4 в текстовом редакторе Word. Курсовой проект предусматривает предварительное изучение курса лекции и семинаров по TMM, представленных на сайте https://sdo.timacad.ru

Примерная структура курсового проекта представлена в таблице 2.

Таблица 1 — Требования к результатам выполнения курсовой работы по учебной дисциплине Б1.О.12 «Теория механизмов и машин»

No	Код компете	Содержание компетенции (или её	Код и содержание индикатора достижения	В результате из	учения учебной дисципли должны:	ны обучающиеся
п/п	нции части)		компетенции (или ее части)	знать	уметь	владеть
1.	ОПК-1	Способен решать	ОПК-1.1 Демонстрирует	основные	продемонстрировать	инструментарием
		типовые задачи	знание основных законов	законы	полученные знания	для решения
		профессиональной	математических и	математических	решения типовых	типовых задач
		деятельности на	естественных наук,	и естественных	задач	профессионально
		основе знаний	необходимых для решения	наук	профессиональной	й деятельности
		основных законов	типовых задач		деятельности	
		математических и	профессиональной			
		естественных наук с	деятельности			
		применением	ОПК-1.2 Использует знания	основные	применять,	инструментарием
		информационно-	основных законов	законы	полученные знания	для решения
		коммуникационных	математических и	математических	для решения	практических
		технологий	естественных наук для	и естественных	стандартных	инженерных
			решения стандартных задач в	наук	инженерных задач	задач
			области эксплуатации			
			технических средств			
			агропромышленного комплекса			
			ОПК-1.3 Формирует схему и	основы	применять	навыками работы
			последовательность	информационно	информационно-	в системах
			применения основных законов	-	коммуникационные	автоматизированн
			математических и	коммуникацион	технологии в решении	ого
			естественных наук для	ных технологий,	типовых задач	проектирования в
			реализации проектных	в том числе с	профессиональной	том числе с
			решений в области	помощью	деятельности в том	применением

			проектирования и эксплуатации технических средств агропромышленного комплекса	современных программных продуктов Excel, Power Point и осуществлять	числе обработки и интерпретации информации с помощью современных	современных цифровых инструментов Kahoot, Moodle, Компас-3D,
				коммуникации посредством Webinar, Zoom, Mentimeter	программных продуктов Excel, Power Point и осуществлять коммуникации посредством Webinar, Zoom, Mentimeter.	SimInTech.
2	Пкос-5	Способен организовывать и проводить оценку новых и усовершенствованны х образцов наземных-транспортно-	ПКос-5.1 Способен разрабатывать рабочие программы-методики оценки и испытания новых и усовершенствованных образцов наземных транспортно-технологических машин, включая прием и подготовку образца	критерии работоспособно сти и основные теории расчёта механизмов сельскохозяйств енных машин	выполнять расчёты типовых механизмов машин	методами расчёта механизмов и машин
		технологических машин, разрабатывать рекомендации по повышению эксплуатационных свойств	ПКос-5.2 Способен проводить оценку функциональных, энергетических и технических параметров наземных транспортно-технологических машин с подготовкой протоколов испытаний	требования, предъявляемые к разработке проектно-конструкторской документации	разрабатывать проектно- конструкторскую документацию	разработкой проектно- конструкторской документацией

Таблица 2 - Структура курсовой работы и объем отдельных разделов

No	Элемент структуры курсовой работы/проекта	Объем (примерный)
Π/Π		страниц
1	Титульный лист (Приложение А)	1
2	Задание	1
3	Аннотация	1
4	Содержание	1-2
5	Введение	1-2
6	Основная часть	14-18
7	Заключение	1
8	Библиографический список	1
		не менее 5
		источников
9.	Графическая часть	1 листа формата А1

Методические указания по выполнению курсовой работы дисциплины «Теория механизмов и машин» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

4. Порядок выполнения курсовой работы

4.1 Выбор темы

Тематика курсовой работы направлена на закрепление теоретического материала дисциплины, приобретение навыков работы с нормативной и справочной литературой, закрепление знаний расчётов, построения схем и планов.

Обучающемуся выдаться тема курсовой работы из предлагаемого списка.

В таблице 3 представлен перечень примерных тематик курсовой работы по дисциплине «Теория механизмов и машин».

Таблица 3 – Исходные данные к курсовой работе

Варианты данных индивидуального задания для курсовой работы Вари- $J_{
m S2}$ **7**1 **Z**2 **Z**3 **7**4 m_2 $n_{\rm M}$ η φ **m**3 e ант об/мин КГ $K\Gamma \cdot M^2$ град M КГ M 1500 10 50 20 40 0.90 90 0.090 4.2 1.2 0.0552.0 0 1200 0.89 95 0.145 0.096 15 60 25 50 3.9 1.3 2.1 0 3 1400 20 80 25 75 0.88100 0.150 3.8 1.4 0.107 2.2 0 4 1500 16 80 24 72 0.87 105 0.055 3.7 1.5 0.058 2.3 0 5 12 72 28 0.86 2.4 0 1600 56 120 0.160 3.6 0.119 1.6 1700 10 50 15 0.85 125 0.060 2.5 0 6 45 0.065 3.5 1.7 7 1800 15 60 25 50 0.90 130 0.140 4.1 1.1 0.085 2.6 0 1900 20 80 25 75 0.89 135 0.045 4.2 1.3 0.056 2.7 0

9	2000	16	80	24	72	0.88	140	0.150	3.9	1.2	0.097	1.9	0
10	2100	12	72	28	56	0.87	90	0.055	3.8	1.3	0.058	2.0	0
11	2150	10	50	20	40 50	0.86	150	0.160	3.7	1.4	0.129	2.1	0
12	2200 2250	15 20	60 80	25 25	75	0.85	30 35	0.045	3.6	1.5	0.060	2.2	0
14	2300	16	80	24	72	0.89	40	0.150	3.7	1.7	0.060	2.4	0
15	2350	12	72	28	56	0.88	45	0.160	3.6	1.1	0.105	2.5	0
16	2400	10	50	15	45	0.87	50	0.065	3.5	1.3	0.056	2.6	0
17	2450	15	60	25	50	0.86	55	0.140	3.9	1.5	0.077	2.7	0
18	2500	20	80	25	75	0.85	60	0.045	3.8	1.6	0.058	1.9	0
19	2550	16	80	24	72	0.90	65	0.150	3.7	1.7	0.109	2.3	0
20	2600	12	72	28	56	0.89	70	0.050	3.6	1.8	0.060	2.5	0
21	2150	10	50	20	40	0.90	30	0.235	4.2	1.2	0.125	2.0	0
22	2200	15	60	25	50	0.89	35	0.040	3.9	1.3	0.056	2.1	0
23	2250	20	80	25	75	0.88	40	0.245	3.8	1.4	0.137	2.2	0
24	2300	16	80	24	72	0.87	45	0.050	3.7	1.5	0.058	2.3	0
25	2350	12	72	28	56	0.86	50	0.255	3.6	1.6	0.149	2.4	0
26	2400	10	50	20	40	0.85	55	0.060	3.5	1.7	0.060	2.5	0
27	2450	15	60	25	50	0.90	60	0.235	4.1	1.1	0.125	2.6	0
28	2500	20	80	25	75	0.89	65	0.040	4.2	1.3	0.056	2.7	0
29	2550	16	80	24	72	0.88	70	0.245	3.9	1.2	0.153	1.9	0
30	2600	12	72	28	56	0.87	75	0.050	3.8	1.3	0.058	2.0	0
31	1500	10	50	15	45	0.86	80	0.160	3.7	1.4	0.089	2.1	0
32	1100	15	60	25	50	0.85	85	0.045	3.6	1.5	0.060	2.2	0
33	1200	20	80	25	75	0.90	90	0.150	3.5	1.6	0.059	2.3	0
34	1300	16	80	24	72	0.89	95	0.055	3.7	1.7	0.060	2.4	0
35	1400	12	72	28	56	0.88	100	0.160	3.6	1.1	0.095	2.5	0
36	1500	10	50	20	40	0.87	105	0.065	3.5	1.3	0.056	2.6	0
37	1600	15	60	25	50	0.86	110	0.240	3.9	1.5	0.127	2.7	0
38	1700	20	80	25	75	0.85	115	0.145	3.8	1.6	0.078	1.9	0
39	1800	16	80	24	72	0.90	120	0.050	3.7	1.7	0.059	2.3	0
40	1900	12	72	28	56	0.89	125	0.150	3.6	1.8	0.090	2.5	0
41	1500	16	80	24	72	0.91	30	0.060	3.6	1.2	0.070	1.9	0
42	1100	12	72	28	56	0.92	35	0.245	3.5	1.3	0.155	2.3	0
43	1200	15	60	25	50	0.93	40	0.050	3.9	1.4	0.056	2.5	0
44	1300	10	50	20	40	0.90	45	0.155	3.8	1.5	0.087	2.0	0
45	1400	20	80	25	75	0.89	50	0.060	3.7	1.6	0.058	2.1	0
46	1500	10	50	15	45	0.90	55	0.165	3.6	1.7	0.079	2.2	0
47	1600	15	60	25	50	0.91	60	0.240	4.2	1.1	0.160	2.3	0
48	1700	12	72	28	56	0.92	65	0.145	3.9	1.3	0.089	2.4	0
	l .	·	1	1	<u> </u>	l .	1	L	<u> </u>	<u>I</u>	L	1	<u>. </u>

49	1800	10	50	20	40	0.93	70	0.050	3.8	1.5	0.060	2.5	0
50	1900	10	50	15	45	0.88	30	0.250	3.7	1.6	0.155	2.6	0
51	1500	10	50	20	40	0.90	90	0.090	4.2	1.2	0.055	2.0	0.05
52	1200	15	60	25	50	0.89	95	0.145	3.9	1.3	0.106	2.1	0.07
53	1400	20	80	25	75	0.88	100	0.150	3.8	1.4	0.077	2.2	0.06
54	1500	16	80	24	72	0.87	105	0.055	3.7	1.5	0.058	2.3	0.03
55	1600	12	72	28	56	0.86	120	0.160	3.6	1.6	0.089	2.4	0.08
56	1700	10	50	15	45	0.85	125	0.065	3.5	1.7	0.060	2.5	0.03
57	1800	15	60	25	50	0.90	130	0.140	4.1	1.1	0.075	2.6	0.07
58	1900	20	80	25	75	0.89	135	0.045	4.2	1.3	0.056	2.7	0.03
59	2000	16	80	24	72	0.88	140	0.150	3.9	1.2	0.097	1.9	0.09
60	2100	12	72	28	56	0.87	145	0.055	3.8	1.3	0.058	2.0	0.04
61	2150	10	50	20	40	0.86	150	0.160	3.7	1.4	0.079	2.1	0.09
62	2200	15	60	25	50	0.85	130	0.045	3.6	1.5	0.060	2.2	0.02
63	2250	20	80	25	75	0.90	135	0.150	3.5	1.6	0.099	2.3	0.09
64	2300	16	80	24	72	0.89	140	0.055	3.7	1.7	0.060	2.4	0.03
65	2350	12	72	28	56	0.88	90	0.160	3.6	1.1	0.095	2.5	0.08
66	2400	10	50	15	45	0.87	150	0.065	3.5	1.3	0.056	2.6	0.04
67	2450	15	60	25	50	0.86	105	0.140	3.9	1.5	0.097	2.7	0.08
68	2500	20	80	25	75	0.85	110	0.045	3.8	1.6	0.058	1.9	0.02
69	2550	16	80	24	72	0.90	115	0.150	3.7	1.7	0.079	2.3	0.09
70	2600	12	72	28	56	0.89	120	0.050	3.6	1.8	0.060	2.5	0.03
71	2150	10	50	20	40	0.90	30	0.235	4.2	1.2	0.145	2.0	0.09
72	2200	15	60	25	50	0.89	35	0.040	3.9	1.3	0.056	2.1	0.02
73	2250	20	80	25	75	0.88	40	0.245	3.8	1.4	0.157	2.2	0.12
74	2300	16	80	24	72	0.87	45	0.050	3.7	1.5	0.058	2.3	0.03
75	2350	12	72	28	56	0.86	50	0.255	3.6	1.6	0.159	2.4	0.13
76	2400	10	50	20	40	0.85	55	0.060	3.5	1.7	0.060	2.5	0.04
77	2450	15	60	25	50	0.90	60	0.235	4.1	1.1	0.125	2.6	0.11
78	2500	20	80	25	75	0.89	65	0.040	4.2	1.3	0.056	2.7	0.02
79	2550	16	80	24	72	0.88	70	0.245	3.9	1.2	0.137	1.9	0.13
80	2600	12	72	28	56	0.87	75	0.050	3.8	1.3	0.058	2.0	0.02
81	1500	10	50	15	45	0.86	80	0.160	3.7	1.4	0.099	2.1	0.10
82	1100	15	60	25	50	0.85	85	0.045	3.6	1.5	0.060	2.2	0.03
83	1200	20	80	25	75	0.90	90	0.150	3.5	1.6	0.079	2.3	0.11
84	1300	16	80	24	72	0.89	95	0.055	3.7	1.7	0.060	2.4	0.04
85	1400	12	72	28	56	0.88	100	0.160	3.6	1.1	0.095	2.5	0.09

86	1500	10	50	20	40	0.87	105	0.065	3.5	1.3	0.056	2.6	0.05
87	1600	15	60	25	50	0.86	110	0.240	3.9	1.5	0.127	2.7	0.13
88	1700	20	80	25	75	0.85	115	0.145	3.8	1.6	0.108	1.9	0.11
89	1800	16	80	24	72	0.90	120	0.050	3.7	1.7	0.059	2.3	0.03
90	1900	12	72	28	56	0.89	125	0.150	3.6	1.8	0.100	2.5	0.08
91	1500	16	80	24	72	0.91	130	0.060	3.6	1.2	0.066	1.9	0.04
92	1100	12	72	28	56	0.92	135	0.245	3.5	1.3	0.155	2.3	0.15
93	1200	15	60	25	50	0.93	90	0.050	3.9	1.4	0.056	2.5	0.03
94	1300	10	50	20	40	0.90	105	0.155	3.8	1.5	0.107	2.0	0.09
95	1400	20	80	25	75	0.89	115	0.060	3.7	1.6	0.058	2.1	0.04
96	1500	10	50	15	45	0.90	110	0.165	3.6	1.7	0.109	2.2	0.11
97	1600	15	60	25	50	0.91	120	0.240	4.2	1.1	0.160	2.3	0.16
98	1700	12	72	28	56	0.92	125	0.145	3.9	1.3	0.119	2.4	0.08
99	1800	10	50	20	40	0.93	130	0.050	3.8	1.5	0.060	2.5	0.03
100	1900	10	50	15	45	0.88	90	0.250	3.7	1.6	0.175	2.6	0.17

К каждой теме составлены варианты исходных параметров.

Номер задания так же можно выбирать по номеру из списка группы, а номер варианта по последний цифре номера группы.

Выбор темы курсовой работы, номер задания и номер варианта регистрируется в журнале регистрации курсовых работ на кафедре.

4.2 Получение индивидуального задания

Задание на выполнение курсовой работы (Приложение Б) выдаётся за подписью руководителя, датируется днём выдачи и регистрируется на кафедре в журнале. Факт получения задания удостоверяется подписью обучающегося в указанном журнале.

4.3 Составление плана выполнения курсовой работы

Выбрав тему, определив цель, задачи, структуру и содержание курсовой работы необходимо совместно с руководителем составить план-график выполнения курсовой работы с учётом графика учебного процесса (табл. 4). Таблица 4 — Примерный план-график выполнения курсовой работы

No	Наименование действий	Сроки, № недели семестра
1	Выбор варианта задания	1
2	Получение задания по курсовой работе	1
3	Уточнение темы и содержания курсовой работы	1
4	Составление библиографического списка	2-3
5	Изучение научной и методической литературы	2-3
6	Сбор материалов, подготовка плана курсовой работы	4-5

7	Анализ собранного материала	4-5
8	Предварительное консультирование	4-5
9	Выполнение основной части	6-12
10	Проведение исследования, получение материалов исследования, обработка данных исследования, обобщение полученных результатов	6-12
11	Представление руководителю первого варианта курсовой работы и обсуждение представленного материала и результатов	12-13
12	Составление окончательного варианта курсовой работы	13-14
13	Заключительное консультирование	14
14	Рецензирование курсовой работы	15
15	Защита курсовой работы	16

4.4 Требования к разработке структурных элементов курсовой работы

Расчётно-пояснительная записка должна представляют пояснительной запиской на листах A4, подготовленной в текстовом редакторе Microsoft Word. шрифт 14 пт, межстрочный интервал 1,5. В ней приводят все расчётные формулы и результаты расчётов, необходимые для выполнения графического раздела. Часть расчётов должна выполняться с применением информационных инструментов, что позволяет варьировать отдельными параметрами и получать многовариантные решения. Выбор оптимального варианта осуществляет студент под руководством преподавателя.

Графическая часть выполняется традиционно на листе формата A1 или в электронном виде, например, с применением программного продукта Компас-3D Kahoot, Moodle, SimInTech; пояснительная часть (записка) на листах A4 в текстовом редакторе Word. Курсовой проект предусматривает предварительное изучение курса лекции и семинаров по TMM, представленных на сайте https://sdo.timacad.ru.

4.4.1 Разработка введения

Во введении следует обосновать актуальность избранной темы курсовой работы, раскрыть ее теоретическую и практическую значимость, сформулировать цель и задачи исследования.

4.4.2 Разработка основной части курсовой работы

Основная часть состоит из следующих пунктов:

- 1. Построение структурной схемы привода и исполнительного механизма;
- 2. Построение кинематической схемы кривошипно-ползунного механизма в заданном положении;
 - 2.1. Определение масштаба кинематической схемы;
 - 2.2. Расчёт размеров звеньев с учётом масштаба;
 - 2.3. Построение кинематической схемы
 - 3. Кинематический расчёт редуктора:

- 3.1. Расчёт передаточного отношения редуктора;
- 3.2. Определение частоты оборотов редуктора на выходном вале;
- 3.3. Расчёт угловой скорости;
- 4. Построение планов скоростей и ускорений в заданном положении механизма:
- 4.1. Определяем скорость и ускорение ведущего звена и задаём масштаб плана скоростей и ускорений;
- 4.2. Задаём размер вектора скорости и ускорения ведущего звена на плане скоростей;
 - 4.3. Строим план скоростей и ускорений;
- 5. Построение кинематической схемы группы звеньев с указанием внешних действующих сил, включая силы инерции звеньев;
 - 5.1. Схема ведущего звена;
 - 5.2. Схема промежуточного звена;
 - 5.3. Схема ведомого звена;
- 6. Определение структурных групп с указанием внутренних сил в кинематических парах;
- 7. Определение уравновешивающей силы, приложенной к кривошипу, методом плана сил;
 - 7.1. Задаём длину отрезка характеризирующею вектор силы;
 - 7.2. Определяем масштаб плана сил;
 - 7.3. Построение плана сил;
 - 8. Оценки мощности сил в заданном положении

4.4.3 Разработка заключения

Основное назначение заключения - резюмировать содержание курсовой работы, подвести итоги проведённых расчётов, соотнеся их с целью и задачами исследования, сформулированными во введении.

4.4.4 Оформление библиографического списка

В библиографический список включаются источники, на которые есть ссылки в тексте курсовой работы (не менее 5 источников). Обязательно присутствие источников, опубликованных в течение последних 3-х лет.

4.4.5 Оформление Приложения

Приложения являются самостоятельной частью работы. В приложениях помещают материал, дополняющий основной текст (при необходимости) и обязательно помещают графическую часть курсовой работы.

Приложениями могут быть: чертежи курсовой работы и др;

4.4.6 Методические рекомендации к выполнению курсовой работы

Раздел 1. КИНЕМАТИЧЕСКАЯ СХЕМА МЕХАНИЗМА

Кинематическая схема механизма отличается от структурной тем, что выполняется в масштабе μ_l длин звеньев (рис. 2):

$$\mu_l = \frac{L}{AB}$$
, M/MM

где AB- длина отрезка в миллиметрах, изображающая на схеме кривошип в масштабе μ_l .

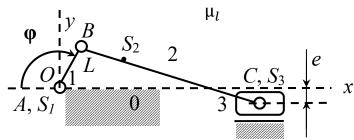


Рис. 2. Кинематическая схема кривошипно-ползунного механизма

Значение масштаба, равное 0,001, означает, что звенья изображены в натуральную величину. Это соответствует масштабу М 1:1 в машиностроительном черчении.

После задания масштаба находим длину BC шатуна на схеме и смещение y_e направляющей ползуна в миллиметрах:

$$BC = L_{BC}/\mu_l;$$
 $y_e = -e/\mu_l.$

Примем, что центра тяжести S_2 шатуна отстоит от шарнира B на расстоянии, равном длине кривошипа, то есть

$$BS_2 = AB$$
.

Раздел 2. ПЕРЕДАТОЧНОЕ ОТНОШЕНИЕ РЕДУКТОРА

Передаточное отношение u_{14} двухступенчатого редуктора определяется как произведение передаточных отношений u_{12} и u_{34} его двух ступеней:

$$u_{14} = u_{12}u_{34}$$
 или $u_{14} = \frac{Z_2Z_4}{Z_1Z_3}$.

Теперь можно найти частоту n вращения выходного вала редуктора и угловую скорость ω_1 кривошипа 1:

$$n = n_M/u_{14}$$
, об/мин; $\omega_1 = \pi n/30$, рад/с.

Раздел 3. ПЛАН СКОРОСТЕЙ

Порядок кинематического исследования механизма, состоящего из стойки, кривошипа 1, шатуна 2 и ползуна 3, определяется формулой его строения:

Механизм класса I (0-1) + группа класса II (2-3).

Следовательно, определение скоростей и ускорений точек следует производить в направлении от ведущего звена 1 к ведомому 3 (рабочему органу).

1. Сначала находим скорость точки B:

$$v_B = \omega_1 L$$
, M/c.

2. Задаем масштаб плана скоростей с учетом известной скорости точки Bкривошипа. Чтобы скорость точки B на плане изображалась отрезком длины 20 мм, масштаб μ_{ν} надо вычислить по формуле

$$\mu_{v} = \frac{v_{B}}{20}, \frac{M/C}{MM}.$$

3. На плане скоростей изображаем вектор \vec{pb} с началом в полюсе p плана и концом в точке b. Его длина равна 20 мм, если масштаб μ_{ν} рассчитан по формуле в п. 2. Его направление параллельно вектору $\vec{v}_{\scriptscriptstyle R}$, TO есть ABперпендикулярно отрезку на кинематической схеме и соответствует направлению круговой стрелки, изображающей угловую скорость вращения кривошипа

(рис. 3).

$$\mu_{v} = 0.2 \frac{\text{M/c}}{\text{MM}}$$

$$2 / \perp BC$$

$$c / | |Ox| 1$$

Рис. 3. План скорости точки В

4. Определяем скорость точки C. Точки B и C принадлежат одному звену. Из курса теоретической механики известно, что

где \vec{v}_{BC} – вектор скорости точки C относительно точки B (полюса), направленный перпендикулярно отрезку BC.

Скорость точки C шатуна, являющейся и центром ползуна, направлена параллельно горизонтальной оси Ох. В формуле вектор, известный по

величине и направлению, подчеркнут дважды, а известный только по величине или только по направлению — один раз. Разделив обе части последнего равенства на масштаб μ_{ν} , придём к векторному уравнению в отрезках:

$$\frac{\overrightarrow{pc}}{||Ox} = \frac{\overrightarrow{pb}}{||Dx} + \frac{\overrightarrow{bc}}{||BC}$$

Вектор \overrightarrow{bc} в последнем уравнении изображает вектор \overrightarrow{v}_{BC} в масштабе.

В методе планов скоростей последнее векторное уравнение решается графическим способом. Так как искомый вектор \overrightarrow{pc} параллелен оси Ox, то конец c вектора находится на прямой 1, проходящей через полюс p параллельно оси Ox кинематической схемы (рис. 4). Конец c искомого вектора \overrightarrow{bc} находится на прямой 2, проходящей через начало b вектора перпендикулярно отрезку BC кинематической схемы. Пересечение прямых 1 и 2 указывает положение точки c.

5. С помощью теоремы подобия на плане скоростей определяем положение s_2 центра масс шатуна и вектор $\overrightarrow{ps_2}$, равный вектору скорости центра масс в масштабе (рис. 4):

$$\frac{bs_2}{hc} = \frac{BS_2}{BC}$$
.

6. Определяем величину угловой скорости ω_2 шатуна по формуле

$$\omega_2 = \frac{\mu_v bc}{\mu_I BC}$$
.

В последней формуле *bc* означает число, равное длине отрезка *bc* в миллиметрах, измеренное на плане скоростей. Направление круговой стрелки, изображающей угловую

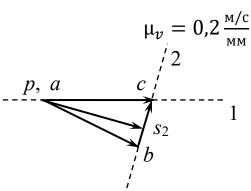


Рис. 4. План скоростей кривошипно-ползунного

скорость ω_2 вращения шатуна вокруг точки B, должно соответствовать направлению вектора \overrightarrow{bc} , приложенного к точке C кинематической схемы.

Раздел 4. ПЛАН УСКОРЕНИЙ

Построение плана ускорений аналогично построению плана скоростей.

1. Определяем ускорение a_B точки B по формуле

$$a_B = \omega_1^2 L$$
, m/c².

2. Задаём масштаб плана с учётом известного ускорения точки B кривошипа. При равномерном вращении кривошипа ускорение точки B равно нормальному ускорению и направлено от точки B к точке A. Касательное ускорение точки равно нулю. Чтобы ускорение точки B на плане изображалось отрезком длины 20 мм, масштаб μ_a надо рассчитать по формуле

$$\mu_a = \frac{a_B}{20}, \frac{M/c^2}{MM}.$$

- 3. На плане ускорений изображаем вектор $\overrightarrow{nb'}$ с началом в полюсе π плана, параллельный отрезку AB на кинематической схеме и направленный от точки B к точке A (рис. 5).
- 4. Определяем ускорение точки C шатуна и центра ползуна.

 $\mu_a = 8 \frac{\text{m/c}^2}{\text{mm}} / \pi$

Рис. 5. План ускорения точки *В*

Из курса теоретической механики известно, что

$$\frac{\vec{a}_C}{\underline{\underline{}}} = \frac{\vec{a}_B}{\underline{\underline{}}} + \frac{\vec{a}_{BC}}{\underline{\underline{}}},$$

где \vec{a}_{BC} – вектор ускорения точки C шатуна относительно точки B (полюса).

Ускорение \vec{a}_{BC} складывается из нормального ускорения \vec{a}_{BC}^n , направленного параллельно отрезку BC от точки C к полюсу B, и касательного \vec{a}_{BC}^{τ} , направленного перпендикулярно отрезку BC:

$$\underline{\underline{\vec{a}_C}} = \underline{\underline{\vec{a}_B}} + \underline{\underline{\vec{a}_{BC}}}^n + \underline{\underline{\vec{a}_{BC}}}^{\tau}.$$

Ускорение точки C ползуна, направлено параллельно горизонтальной оси Ox, так как траектория точки C — прямая линия. Поскольку угловая скорость ω_2 шатуна в данном положении определена в п. 5 построения плана скоростей, нормальное ускорение \vec{a}_{BC}^n точки C в движении относительно полюса B известно и по направлению, и по величине:

$$a_{BC}^n = \omega_2^2 \mu_l BC.$$

Разделив обе части предпоследнего равенства на масштаб μ_a , придём к векторному уравнению в отрезках:

$$\underline{\overrightarrow{nc'}} = \underline{\overline{mb'}} + \underline{\underline{b'n}} + \underline{nc'},
||Ox|| \overline{AB} ||\overline{BC}| \underline{LBC}$$

где

$$\overrightarrow{b'n} = \frac{\vec{a}_{BC}^n}{\mu_a}; \overrightarrow{nc'} = \frac{\vec{a}_{BC}^{\tau}}{\mu_a}.$$

Для определения положения точки n строим расчётный вектор $\overline{b'n}$ с началом в точке b' и направленный параллельно вектору \overrightarrow{CB} , то есть параллельно прямой 1 на плане или отрезку BC на кинематической схеме и направленный от точки C к точке B.

Последнее векторное уравнение имеет две неизвестные: величины векторов $\overrightarrow{\pi c'}$ и $\overrightarrow{nc'}$. Конец c' вектора $\overrightarrow{\pi c'}$ находится на прямой 2, проходящей через полюс π параллельно оси Ox, а вектора $\overrightarrow{nc'}$ на прямой 3, проходящей через точку n перпендикулярно отрезку BC (рис. 6).

После измерения длины отрезка $\pi c'$ на плане ускорений в миллиметрах определяем ускорение центра масс S_3 ползуна по формуле

$$a_{S_3} = a_C = \mu_a \pi c', \text{ m/c}^2.$$

 $\varepsilon_2 = \frac{\mu_a \, nc}{\mu_a \, BC}$

5. С помощью отношения $\frac{b'c'}{BC} = \frac{b's_2'}{BS_2}$ теоремы подобия, аналогичной одноименной теореме, использованной при построении плана скоростей, длину отрезка $b's_2'$ и определяем наносим точку s_2' на отрезке b'c' плана $\mu_a = 8 \frac{\text{м/c}^2}{\text{мм}}$ ускорений на расстоянии $b's'_2$ от точки b'. Соединяем полюс π с точкой s_2' и получаем вектор $\overrightarrow{\pi s_2}'$, равный вектору ускорения центра масс шатуна в масштабе (рис. 6). Величину a_{S_2} ускорения точки вычисляем по формуле $a_{S_2} = \mu_a \pi s_2', \text{ m/c}^2.$

6. Находим величину углового ускорения ε₂ вращения шатуна из формулы

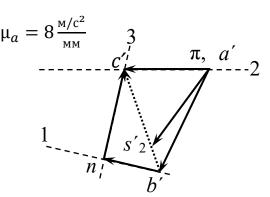


Рис. 6. План ускорений кривошипно-ползунного

Направление круговой стрелки, изображающей угловое ускорение ε_2 вращения шатуна относительно точки B, должно соответствовать направлению вектора $\overrightarrow{nc'}$, приложенного к точке C кинематической схемы.

Раздел 5. СИЛЫ ИНЕРЦИИ ЗВЕНЬЕВ

При кинетостатическом исследовании механизмов силы инерции звеньев условно относят к активным внешним силам, то есть к динамической нагрузке. Они выполняют две роли:

положительную, например, в случае ситового сепаратора, когда специально создаваемые силы инерции вызывают вибрацию кузова машины, обеспечивая наилучший технологический эффект по извлечению примесей из зерна;

отрицательную, когда силы инерции приводят к дисбалансу вращающихся звеньев, вибрации и дополнительно нагружают подшипниковые узлы валов.

В соответствии с принципом Даламбера силы инерции, действующие на звено, приводятся к паре сил с моментом M_u и силе инерции \vec{F}_u , приложенной в центре масс звена. Если m — масса звена, совершающего плоскопараллельное движение, то

$$\begin{cases} \vec{F}_u = -m\vec{a} \\ M_u = -J \, \varepsilon, \end{cases}$$

где \vec{a} – ускорение центра масс звена,

ε –угловое ускорение звена,

J — момент инерции звена относительно центральной оси.

Знак минус в этих формулах означает, что сила инерции и момент сил инерции направлены противоположно соответственно ускорению центра масс и угловому ускорению звена.

Рассмотрим силы инерции, действующие на звенья.

Звено1

Равномерно вращающийся кривошип может быть неуравновешенным и

уравновешенным звеном (рис. 7). В первом случае сила инерции отлична от нуля и приложена к центру масс кривошипа. Во втором случае наличие противовеса приводит центр масс S_1 кривошипа на ось вращения A, то есть центробежная сила инерции становится нулевой. Момент пары сил инерции равен нулю.

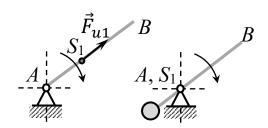


Рис. 7. Неуравновешенный (слева) и уравновешенный (справа) кривошип

Звено 2

В соответствии с принципом Даламбера силы инерции, действующие на шатун, приводятся к паре сил с моментом M_{u2} и силе инерции \vec{F}_{u2} , приложенной в центре масс шатуна (рис. 8).

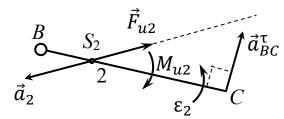


Рис. 8. Силы инерции, действующие на шатун

ЗвеноЗ

На ползун, помимо реакций связей, действуют сила \vec{F}_3 технологического сопротивления и сила \vec{F}_{u3} инерции, направление которой определяют из плана ускорений (рис. 9). Примем, что сила \vec{F}_3 технологического сопротивления направлена противоположно скорости ползуна и по величине

ползун

равна удвоенной силе инерции ползуна в данном положении:

$$F_3=2F_{u3}.$$

Итак, для расчёта сил инерции звеньев с уравновешенным кривошипом необходимо знать что, кинематическую схему механизма в данном положении (рис. 2); план ускорений в исследуемом положении механизма (рис. 6); массы звеньев m_2 , m_3 ; момент инерции шатуна J_{s2} относительно центральной оси, проходящей через центр тяжести S_2 перпендикулярно плоскости движения.

Раздел 6. СИЛОВОЙ РАСЧЁТ СТРУКТУРНЫХ ГРУПП АССУРА

Силовой расчёт, выполненный с учётом сил инерции звеньев, называют кинетостатическим исследованием механизма. Знание сил, приложенных к каждому звену, даёт возможность проектного или поверочного расчёта звена на прочность и жёсткость.

Порядок силового расчёта противоположен последовательности кинематического исследования, т.е. определение сил, действующих на звенья,

следует производить от ведомого звена 3 к ведущему 1.

Силовой расчёт начинают с группы, содержащей ведомое звено (рис. 10). При этом концевые кинематические

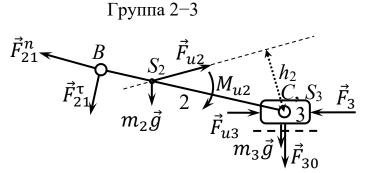


Рис. 10. Схема силового расчёта группы 2-3

пары, входящие в состав группы, мысленно «разрушают».

На шатун в точке B (центре шарнира) действует реакция \vec{F}_{21} со стороны связи (звена 1), которую для удобства расчётов разлагают на нормальную (вдоль оси BC шатуна) и тангенциальную (перпендикулярно оси BC) составляющие:

$$\vec{F}_{21} = \vec{F}_{21}^n + \vec{F}_{21}^\tau.$$

Разрушение поступательной пары, образованной при соприкосновении ползуна 3 и неподвижной направляющей 0, приводит к появлению реактивной силы \vec{F}_{30} . Без учёта трения в данной паре вектор \vec{F}_{30} перпендикулярен к направляющей ползуна.

Для упрощения расчётов будем полагать, что линии действия сил технологического сопротивления, инерции и реакции стойки, действующие на ползун, пересекаются в центре шарнира C.

Заметим, что первоначальные направления на схеме реакции стойки и нормальной составляющей реакции подвижного шарнира B выбраны произвольно и определятся при составлении плана сил.

Запишем уравнения равновесия группы 2—3 с учётом сил инерции в том случае, когда весом шатуна и ползуна можно пренебречь в сравнении с силами инерции звеньев:

$$\vec{F}_{21}^n + \vec{F}_{21}^\tau + \vec{F}_{u2} + \vec{F}_{u3} + \vec{F}_{30} = \vec{0}. \tag{1}$$

$$M_C(\vec{F}_{u2}) - M_{u2} + M_C(\vec{F}_{21}^{\tau}) = 0.$$
 (2)

Во-первых, векторная сумма всех сил, приложенных к группе, должна равняться нулю и, во- вторых, сумма моментов всех сил относительно точки C также должна равняться нулю.

Уравнение (2) разрешается графоаналитическим способом с помощью кинематической схемы группы на рисунке 10:

$$-F_{u2}h_2\mu_l - M_{u2} + F_{21}^{\tau}L_{BC} = 0,$$

где μ_l – известный масштабный коэффициент длин схемы, м/мм;

 h_2 – плечо силы \vec{F}_{u2} на кинематической схеме, мм;

 L_{BC} — заданная длина шатуна 2, м.

После измерения плеча h_2 на схеме из последнего уравнения находим F_{21}^{τ} :

$$F_{21}^{\tau} = (F_{u2}h_2\mu_l + M_{u2})/L_{BC}.$$

Если знак F_{21}^{τ} окажется отрицательным, направление вектора \vec{F}_{21}^{τ} на схеме необходимо изменить на противоположное, а знак минус на плюс.

После определения вектора \vec{F}_{21}^{τ} уравнение (1) содержит две неизвестные, а именно, величины векторов сил \vec{F}_{21}^{n} и \vec{F}_{30} , и может быть разрешено.

Итак, при отсутствии трения между ползуном и направляющей и действии на ползун сходящихся сил, силовой расчёт группы 2–3 позволяет определить все внешние силы.

Крайние векторы сил в уравнении (1) не известны по величине и известны по направлению. Для решения этого уравнения графическим способом строится план сил, на котором изображается замкнутый многоугольник сил в масштабе.

Многоугольник сил в масштабе строится от полюса O, начиная с известной силы \vec{F}_{21}^{τ} (рис. 11).

Представим алгоритм построения плана сил.

- 1. Выбираем полюс плана О.
- 2. Определяем масштабный коэффициент μ_F по формуле

$$\mu_F = F_3/Z_3,$$

где Z_3 — назначенная длина отрезка, изображающего на плане вектор силы \vec{F}_3 в миллиметрах.

3. Из полюса проводим вектор \vec{Z}_{21}^{τ} , сонаправленный с вектором силы \vec{F}_{21}^{τ} перпендикулярно оси BC шатуна и длиной, равной величине F_{21}^{τ} силы в масштабе:

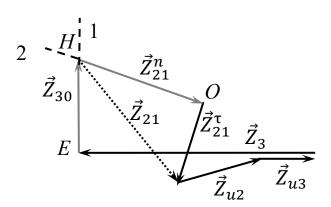


Рис. 11. План сил

$$Z_{21}^{\tau} = F_{21}^{\tau}/\mu_F.$$

4. Из конца вектора \vec{Z}_{21}^{τ} проводим вектор \vec{Z}_{u2} , параллельный силе \vec{F}_{u2} и равный ей в масштабе:

$$\vec{Z}_{u2} = \vec{F}_{u2}/\mu_F.$$

- 5. Из конца вектора \vec{Z}_{u2} проводим вектор \vec{Z}_{u3} , сонаправленный с вектором силы \vec{F}_{u3} и длиной, равной величине силы в масштабе: $\vec{Z}_{u3} = \vec{F}_{u3}/\mu_F$.
 - 6. Аналогично строим вектор \vec{Z}_3 ;
 - 7. Из конца E вектора \vec{Z}_3 проводим луч 1, параллельный вектору силы \vec{F}_{30} .
 - 8. Из полюса O проводим луч 2 параллельно силе \vec{F}_{21}^n или отрезку BC.
- 9. Отмечаем пересечение H лучей 1, 2, являющееся началом вектора \vec{Z}_{21}^n и концом вектора \vec{Z}_{30} , изображающих векторы сил \vec{F}_{21}^n и \vec{F}_{30} в масштабе.
- 10. По векторам \vec{Z}_{21}^n и \vec{Z}_{21}^{τ} строим вектор \vec{Z}_{21} , изображающий вектор силы \vec{F}_{21} в масштабе:

$$\vec{Z}_{21} = \vec{Z}_{21}^n + \vec{Z}_{21}^\tau; \quad F_{21} = \mu_F Z_{21}.$$

Расчёт звена 1

Заданный закон движения кривошипа и механизма можно обеспечить за счет движущей силы или пары сил, действующих на кривошип. Для определения момента $\mathfrak M$ пары достаточно построить кинематическую схему кривошипа с указанием действующей на него реакции $\vec F_{12}$ звена 2:

$$\mathfrak{M} = F_{12}h_1\mu_I,$$

где
$$\vec{F}_{12} = -\vec{F}_{21}$$
;

 h_1 — плечо силы \vec{F}_{12} , измеренное в миллиметрах на кинематической схеме кривошипа с указанием сил (рис. 12);

 μ_l –коэффициент масштаба длин, м/мм.

Вместо уравновешивающей пары можно найти уравновешивающую силу F_y , приложенную к кривошипу в точке B перпендикулярно отрезку AB кривошипа:

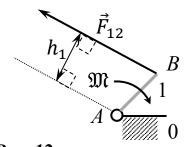


Рис. 12. Кинематическая схема

$$F_{y} = \mathfrak{M}/l_{AB},$$

где l_{AB} — расстояние между точками A,B кривошипа в метрах.

Раздел 7. ВЫБОР ДВИГАТЕЛЯ

Оценка мощности P двигателя в данном положении механизма вычисляется по формуле

$$P=\mathfrak{M}\cdot\omega_1/\eta,$$

где ω_1 – угловая скорость кривошипа, η – кпд передачи (редуктора).

Если вместо угловой скорости задана частота n вращения (об/мин), то формула для мощности примет вид

$$P = \mathfrak{M} \cdot n \cdot \pi/(30 \cdot \eta).$$

Тип электродвигателя и его марку необходимо подобрать с помощью справочника по ближайшей большей стандартной мощности.

Более точные методические рекомендации с приложениями для расчетов приведены в литературе: Белов М.И., Сорокин С.В. Теория механизмов и машин: Учебное пособие. М.: РГАУ-МСХА имени К.А. Тимирязева, 2014. 250 с.

5. Требования к оформлению курсовых работ

5.1 Оформление текстового материала ($\Gamma OCT~7.0.11-2011$)

- 1. Курсовой проект должен быть выполнен печатным способом с использованием компьютера и принтера на одной стороне белой бумаги формата A 4 (210х297 мм).
- 2. Поля: с левой стороны 25 мм; с правой 10 мм; в верхней части 20 мм; в нижней 20 мм.
- 3. Тип шрифта: *Times New Roman Cyr*. Шрифт основного текста: обычный, размер 14 пт. Шрифт заголовков разделов (глав): полужирный, размер 16 пт. Шрифт заголовков подразделов: полужирный, размер 14 пт. Цвет шрифта должен быть черным. Межсимвольный интервал обычный. Межстрочный интервал полуторный. Абзацный отступ 1,25 см.
- 4. Страницы должны быть пронумерованы. Порядковый номер ставится в **середине верхнего поля**. Первой страницей считается титульный лист, но номер страницы на нем не проставляется. Рецензия страница 2, затем 3 и т.д.
- 5. Главы имеют **сквозную нумерацию** в пределах работы и обозначаются арабскими цифрами. В конце заголовка точка не ставится. Если заголовок состоит из двух предложений, их разделяют точкой. Переносы слов в заголовках не допускаются.
- 6. Номер подраздела (параграфа) включает номер раздела (главы) и порядковый номер подраздела (параграфа), разделённые точкой. Пример 1.1, 1.2 и т.д.
- 7. В работе необходимо чётко и логично излагать свои мысли, следует избегать повторений и отступлений от основной темы. Не следует загромождать текст длинными описательными материалами.
- 8. На последней странице курсовой работы ставятся дата окончания работы и подпись автора.
- 9. Законченную работу следует переплести в папку. Написанную и оформленную в соответствии с требованиями курсовую работу обучающийся регистрирует на кафедре. Срок рецензирования — не более 7 дней.

5.2 Оформление ссылок (ГОСТР 7.0.5)

При написании курсовой работы необходимо давать краткие внутритекстовые библиографические ссылки. Если делается ссылка на источник в целом, то необходимо после упоминания автора или авторского коллектива, а также после приведенной цитаты работы, указать в квадратных скобках номер этого источника в библиографическом списке. Например: По мнению Ван Штраалена, существуют по крайней мере три случая, когда биоиндикация становится незаменимой [7].

Допускается внутритекстовую библиографическую ссылку заключать в круглые скобки, с указанием авторов и года издания объекта ссылки. Например, (Черников, Соколов 2018).

Если ссылку приводят на конкретный фрагмент текста документа, в ней указывают порядковый номер и страницы, на которых помещен объект ссылки. Сведения разделяют запятой, заключая в квадратные скобки. Например, [10, с. 81]. Допускается оправданное сокращение цитаты. В данном случае пропущенные слова заменяются многоточием.

5.3 Оформление иллюстраций (ГОСТ 2.105-95)

На все рисунки в тексте должны быть даны ссылки. Рисунки должны располагаться непосредственно после текста, в котором они упоминаются впервые, или на следующей странице. Рисунки нумеруются арабскими цифрами, при этом нумерация сквозная, но допускается нумеровать и в пределах раздела (главы). В последнем случае, номер рисунка состоит из номера раздела и порядкового номера иллюстрации, разделенных точкой (например: Рисунок 1.1).

Подпись к рисунку располагается под ним посередине строки. Слово «Рисунок» пишется полностью. В этом случае подпись должна выглядеть так: Рисунок 2 - Жизненные формы растений

Точка в конце названия не ставится.

При ссылках на иллюстрации следует писать «... в соответствии с рис. 2» при сквозной нумерации и «... в соответствии с рис. 1.2» при нумерации в пределах раздела.

Независимо от того, какая представлена иллюстрация - в виде схемы, графика, диаграммы - подпись всегда должна быть «Рисунок». Подписи типа «Схема 1.2», «Диагр. 1.5» не допускаются.

Схемы, графики, диаграммы (если они не внесены в приложения) должны размещаться сразу после ссылки на них в тексте курсовой работы. Допускается размещение иллюстраций через определенный промежуток текста в том случае, если размещение иллюстрации непосредственно после ссылки на неё приведёт к разрыву и переносу ее на следующую страницу.

5.4 Общие правила представления формул (ГОСТ 2.105-95)

Формулы должны быть оформлены в редакторе формул *Equation Editor* и вставлены в документ как объект.

Большие, длинные и громоздкие формулы, которые имеют в составе знаки суммы, произведения, дифференцирования, интегрирования, размещают на отдельных строках. Это касается также и всех нумеруемых формул. Для экономии места несколько коротких однотипных формул, отделенных от текста, можно подать в одной строке, а не одну под одною. Небольшие и несложные формулы, которые не имеют самостоятельного значения, вписывают внутри строк текста.

Объяснение значений символов и числовых коэффициентов нужно подавать непосредственно под формулой в той последовательности, в которой они приведены в формуле. Значение каждого символа и числового коэффициента нужно подавать с новой строки. Первую строку объяснения начинают со слова «где» без двоеточия.

Уравнения и формулы нужно выделять из текста свободными строками. Выше и ниже каждой формулы нужно оставить не меньше одной свободной строки. Если уравнение не вмещается в одну строку, его следует перенести после знака равенства (=), или после знаков плюс (+), минус (-), умножение.

Нумеровать следует лишь те формулы, на которые есть ссылка в следующем тексте.

Порядковые номера помечают арабскими цифрами в круглых скобках около правого поля страницы без точек от формулы к ее номеру. Формулы должны нумероваться сквозной нумерацией арабскими цифрами, которые записывают на уровне формулы справа в круглых скобках. Допускается нумерация формул в пределах раздела. В этом случае номер формулы состоит из номера раздела и порядкового номера формулы, разделенных точкой (Например, 4.2). Номер, который не вмещается в строке с формулой, переносят ниже формулы. Номер формулы при ее перенесении вмещают на уровне последней строки. Если формула взята в рамку, то номер такой формулы записывают снаружи рамки с правой стороны напротив основной строки формулы. Номер формулы-дроби подают на уровне основной горизонтальной черточки формулы.

Номер группы формул, размещённых на отдельных строках и объединённых фигурной скобкой, помещается справа от острия парантеза, которое находится в середине группы формул и направлено в сторону номера.

Общее правило пунктуации в тексте с формулами такое: формула входит в предложение как его равноправный элемент. Поэтому в конце формул и в тексте перед ними знаки препинания ставят в соответствии с правилами пунктуации.

Двоеточие перед формулой ставят лишь в случаях, предусмотренных правилами пунктуации: а) в тексте перед формулой обобщающее слово; б) этого требует построение текста, который предшествует формуле.

Знаками препинания между формулами, которые идут одна под одной и не отделены текстом, могут быть запятая или точка с запятой непосредственно за формулой к ее номеру.

Пример: Оценка мощности Р двигателя в данном положении механизма вычисляется по формуле:

$$P = \mathfrak{M} \cdot \omega_1 / \eta, \tag{4.2}$$

где: ω_1 – угловая скорость кривошипа, рад/с;

 η – кпд передачи (редуктора).;

 \mathfrak{M} – момента пары сыл, H мм.

При ссылке на формулу в тексте ее номер ставят в круглых скобках. *Например:* Из формулы (4.2) следует...

5.5 Оформление библиографического списка (ГОСТ 7.1)

Пример оформления ссылок:

Книга учебников и учебных пособий

- **1.** Белов М.И., Сорокин С.В. Теория механизмов и машин: Учебное пособие. М.: РИОР ИНФРА-М, 2018.
- 2. Белов М.И., Сорокин С.В. Теория механизмов и машин: Учебное пособие. М.: РГАУ-МСХА имени К.А. Тимирязева, 2014. 250 с.
- 3. Ерохин М.Н., Казанцев С.П. Детали машин: учебное пособие. ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, 2018. 410 с.
- 4. Хямяляйнен, В. А. Теоретическая механика: учебное пособие / В. А. Хямяляйнен. 3-е изд. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2020. 226 с. ISBN 978-5-00137-137-3. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/145146
- 5. Гольцов, В. С. Теоретическая механика : учебное пособие / В. С. Гольцов, В. И. Колосов, Т. С. Байболов. Тюмень : ТюмГНГУ, [б. г.]. Часть 2 2015. 359 с. ISBN 978-5-9961-1102-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/84154

Описание нормативно-технических и технических документов

6. ГОСТ Р 7.0.5-2008 «Система стандартов по информации, библиотечному и издательскому делу. Библиографическая ссылка. Общие требования и правила.

Электронные ресурсы

- 7. https://portal.timacad.ru/university/ учебно-методический портал (открытый доступ)
- 8. https://sdo.timacad.ru/course/view.php?id=469 лекции, варианты индивидуальных домашних заданий и примеры решения задач из учебника (от-крытый доступ)
- 9. http://depositfiles.com/files/3raz5wx06 основные учебники (открытый доступ)

5.6 Оформление графических материалов

Графическая часть выполняется на одной стороне белой чертёжной бумаги в соответствии с требованиями ГОСТ 2.301-68 формата А1 (594х841). В обоснованных случаях для отдельных листов допускается применение других форматов.

Требования к оформлению графической части изложены в стандартах ЕСКД: ГОСТ 2.302-68* «Масштабы»; ГОСТ 2.303-68* «Линии»; ГОСТ 2.304-81* «Шрифты», ГОСТ 2.305-68** «Изображения — виды, разрезы, сечения» и

т. д. Основная надпись на чертежах выполняется по ГОСТ 2.104-68*. Оформления основной надписи графической части выполняется в соответствии с ГОСТ Р 21.1101-2013 СПДС.

Чертежи должны быть оформлены в полном соответствии государственными стандартами: «Единой конструкторской системы (ЕСКД); «Системы документации» проектной документации строительства» (СПДС (ГОСТ 21)) и других нормативных документов. На каждом листе тонкими линиями отмечается внешняя рамка по размеру формата листа, причём вдоль короткой стороны слева оставляется поле шириной 25 мм для подшивки листа. В правом нижнем углу располагается основная подпись установленной формы, приложение Г.

5.7 Требования к лингвистическому оформлению курсовой работы

Курсовой работы должен быть написан логически последовательно, литературным языком. Повторное употребление одного и того же слова, если это возможно, допустимо через 50-100 слов. Не должны употребляться как излишне пространные и сложно построенные предложения, так и чрезмерно краткие лаконичные фразы, слабо между собой связанные, допускающие двойные толкования и т. д.

При написании курсовой работы не рекомендуется вести изложение от первого лица единственного числа: «я наблюдал», «я считаю», «по моему мнению» и т.д. Корректнее использовать местоимение «мы». Допускаются обороты с сохранением первого лица множественного числа, в которых исключается местоимение «мы», то есть фразы строятся с употреблением слов «наблюдаем», «устанавливаем», «имеем». Можно использовать выражения «на наш взгляд», «по нашему мнению», однако предпочтительнее выражать ту же мысль в безличной форме

При написании курсовой работы необходимо пользоваться языком научного изложения. Здесь могут быть использованы следующие слова и выражения:

- для указания на последовательность развития мысли и временную соотнесенность:
 - прежде всего, сначала, в первую очередь;
 - во первых, во вторых и т. д.;
 - затем, далее, в заключение, итак, наконец;
 - до сих пор, ранее, в предыдущих исследованиях, до настоящего времени;
 - в последние годы, десятилетия;
- для сопоставления и противопоставления:
 - однако, в то время как, тем не менее, но, вместе с тем;
 - как..., так и...;
 - с одной стороны..., с другой стороны, не только..., но и;
 - по сравнению, в отличие, в противоположность;
- для указания на следствие, причинность:

- таким образом, следовательно, итак, в связи с этим;
- отсюда следует, понятно, ясно;
- это позволяет сделать вывод, заключение;
- свидетельствует, говорит, даёт возможность;
- в результате;
- для дополнения и уточнения:
 - помимо этого, кроме того, также и, наряду с..., в частности;
 - главным образом, особенно, именно;
- для иллюстрации сказанного:
 - например, так;
 - проиллюстрируем сказанное следующим примером, приведем пример;
 - подтверждением выше сказанного является;
- для ссылки на предыдущие высказывания, мнения, исследования и т.д.:
 - было установлено, рассмотрено, выявлено, проанализировано;
 - как говорилось, отмечалось, подчеркивалось;
 - аналогичный, подобный, идентичный анализ, результат;
 - по мнению X, как отмечает X, согласно теории X;
- для введения новой информации:
 - рассмотрим следующие случаи, дополнительные примеры;
 - перейдем к рассмотрению, анализу, описанию;
 - остановимся более детально на...;
 - следующим вопросом является...;
 - еще одним важнейшим аспектом изучаемой проблемы является...;
- для выражения логических связей между частями высказывания:
 - как показал анализ, как было сказано выше;
 - на основании полученных данных;
 - проведенное исследование позволяет сделать вывод;
 - резюмируя сказанное;
 - дальнейшие перспективы исследования связаны с....

Письменная речь требует использования в тексте большого числа развернутых предложений, включающих придаточные предложения, причастные и деепричастные обороты. В связи с этим часто употребляются составные подчинительные союзы и клише:

- поскольку, благодаря тому что, в соответствии с...;
- в связи, в результате;
- при условии, что, несмотря на...;
- наряду с..., в течение, в ходе, по мере.

Необходимо определить основные понятия по теме исследования, чтобы использование их в тексте курсовой работы было однозначным. Это означает: то или иное понятие, которое разными учёными может трактоваться поразному, должно во всем тексте данной работы от начала до конца иметь лишь одно, чётко определенное автором курсовой работы значение.

В курсовой работе должно быть соблюдено единство стиля изложения, обеспечена орфографическая, синтаксическая и стилистическая грамотность в соответствии с нормами современного русского языка.

6. Порядок защиты курсовой работы

Ответственность за организацию и проведение защиты курсовой работы возлагается на заведующего кафедрой и руководителя выполнения курсовой работы. Заведующий кафедрой формирует состав комиссии по защите курсовых работ, утверждённый протоколом заседания кафедры. Руководитель информирует обучающихся о дне и месте проведения защиты курсовых работ, обеспечивает работу комиссии необходимым оборудованием, проверяет соответствие тем представленных курсовых работ примерной тематике, готовит к заседанию комиссии экзаменационную ведомость с включением в неё тем курсовой работы обучающихся, даёт краткую информацию о порядке проведения защиты курсовых работ, обобщает информацию об итогах проведения защиты курсовых работ на заседание кафедры.

К защите могут быть представлены только работы, которые получили положительную рецензию. Не зачтённая работа должна быть доработана в соответствии с замечаниями руководителя в установленные сроки и сдана на проверку повторно.

Защита курсовых работ проводится с начала экзаменационной сессии. Защита курсовой работы включает:

- краткое сообщение автора продолжительностью 5-7 минут об актуальности работы, целях, объекте исследования, результатах и рекомендациях по совершенствованию деятельности анализируемой организации в рамках темы исследования;
 - вопросы к автору работы и ответы на них;
 - отзыв руководителя.

Защита курсовой работы производится публично (в присутствии обучающихся, защищающих проекты в этот день) членам комиссии.

Если при проверке или защите выяснится, что обучающийся не является ее автором, то защита прекращается. Обучающийся будет обязан написать курсовую работу по другой теме.

При оценке курсовой работы учитывается:

- степень самостоятельности выполнения работы;
- актуальность и новизна работы;
- сложность и глубина разработки темы;
- знание современных подходов на исследуемую проблему;
- использование периодических изданий по теме;
- качество оформления;
- чёткость изложения доклада на защите;
- правильность ответов на вопросы.

В соответствии с установленными правилами курсовой работы оценивается по следующей шкале, представленной в таблице 4:

Таблица 4

Критерии оценивания результатов обучения

	Критерии оценивания результатов обучения
Оценка	Критерии оценивания
Высокий уровень «5» (отлично)	на «отлично» оценивается работа, в которой курсовая работа выполнен в соответствии с утвержденным планом; расчеты, чертежи выполнены точно и верно. Студентом сформулированы собственные аргументированные выводы по теме курсовой работы. Студент владеет специальной терминологией; стилистические и грамматические ошибки отсутствуют. Оформление курсовой работы соответствует предъявляемым требованиям. При написании и защите курсовой работы студентом продемонстрирован высокий уровень развития профессиональных компетенций, теоретических знаний и наличие практических навыков. Чертежи выполнены в соответствии с ГОСТами. При защите курсовой работы студент отвечает на вопросы. Компетенции, закреплённые за дисциплиной, сформированы на уровне — высокий
Средний уровень «4» (хорошо)	- на «хорошо» оценивается работа, в которой курсовая работа выполнен в соответствии с утверждённым планом; расчёты, чертежи выполнены с неточностями. Имеются замечания к оформлению работы. Студент владеет специальной терминологией. При написании и защите курсовой работы студентом продемонстрирован средний уровень развития профессиональных компетенций, наличие теоретических знаний и достаточных практических навыков. Чертежи выполнены в соответствии с ГОСТами. При защите курсовой работы студент владеет материалом, но отвечает не на все поставленные вопросы Компетенции, закреплённые за дисциплиной, сформированы на уровне – хороший (средний).
Пороговый уровень «3» (удовлетворит ельно)	на «удовлетворительно» оценивается работа, в которой курсовая работа выполнен в соответствии с утверждённым планом; расчёты, чертежи выполнены с ошибками. Студентом не сделаны собственные выводы по теме курсовой работы. Грубые недостатки в оформлении курсовой работы; слабое владение специальной терминологией; стилистические и грамматические ошибки. При защите курсовой работы, испытывал затруднения при ответах на вопросы. Компетенции, закреплённые за дисциплиной, сформированы на уровне – достаточный.
Минимальны й уровень «2» (неудовлетвор ительно)	на «неудовлетворительно» оценивается работа, в которой курсовая работа выполнен в соответствии с утверждённым планом; не раскрыто содержание каждого вопроса; допустил грубее ошибки в расчётах, чертежах. Студентом не сделаны выводы по теме курсовой работы. Грубые недостатки в оформлении курсовой работы. На защите курсовой работы студент показал поверхностные знания по теме, неправильно отвечал на вопросы. Компетенции, закреплённые за дисциплиной, сформированы на уровне – не сформированы.

По итогам защиты за курсовой работы выставляется оценка на титульный лист работы, в экзаменационную ведомость и зачётную книжку обучающегося.

7. Учебно-методическое и информационное обеспечение курсовой работы 7.1. Основная литература

- **1.** Ерохин М.Н., Казанцев С.П. Детали машин: учебное пособие. ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, 2018. 410 с.
- **2.** Хямяляйнен, В. А. Теоретическая механика: учебное пособие / В. А. Хямяляйнен. 3-е изд. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2020. 226 с. ISBN 978-5-00137-137-3. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/145146
- **3.** Гольцов, В. С. Теоретическая механика : учебное пособие / В. С. Гольцов, В. И. Колосов, Т. С. Байболов. Тюмень : ТюмГНГУ, [б. г.]. Часть 2 2015. 359 с. ISBN 978-5-9961-1102-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/84154

7.2 Дополнительная литература

- 1. Теоретическая механика: учебное пособие / Т. А. Валькова, О. И. Рабецкая, А. Е. Митяев [и др.]. Красноярск: СФУ, 2019. 272 с. ISBN 978-5-7638-4004-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/157640
- **2.** Белов М.И., Сорокин С.В. Теория механизмов и машин: Учебное пособие. М.: РИОР ИНФРА-М, 2014. -250 с.
- **3.** Белов М. И. Теоретическая механика [Текст] / М. И. Белов, Пылаев Борис Васильевич Пылаев Б.В. М. : Изд-во РГАУ МСХА им. К.А.Тимирязева, 2011. 296 с.
- **4.** Жуковский, Н. Е. Теоретическая механика в 2 т. Том 1 : учебник для вузов / Н. Е. Жуковский. Москва : Издательство Юрайт, 2021. 404 с. (Высшее образование). ISBN 978-5-534-03529-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/471763
- **5.** Жуковский, Н. Е. Теоретическая механика в 2 т. Том 2 : учебник для вузов / Н. Е. Жуковский. Москва : Издательство Юрайт, 2021. 411 с. (Высшее образование). ISBN 978-5-534-03531-5. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/471836

7.3. Методические указания, рекомендации и другие материалы к занятиям

- 1. Игнаткин И.Ю., Геометрические и силовые параметры цилиндрических зубчатых передач приводов стационарных сельскохозяйственных машин: Методические рекомендации/ И.Ю. Игнаткин, ФГБОУ ВО РГАУ-МСХА имени К.А. Тимирязева, 2016. 21 с.
- 2. Гребенкин В.З. Техническая механика: учебник и практикум для вузов / В. З. Гребенкин, Р. П. Заднепровский, В. А. Летягин; под редакцией В. З. Гребенкина, Р. П. Заднепровского. Москва: Издательство Юрайт, 2021. 390 с. (Высшее образование). ISBN 978-5-9916-5953-6. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/469392

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. <u>https://portal.timacad.ru/university/</u> учебно-методический портал (открытый доступ)
- 2. <u>https://sdo.timacad.ru/course/view.php?id=469</u> лекции, варианты индивидуальных домашних заданий и примеры решения задач из учебника (открытый доступ)
- 3. <u>http://depositfiles.com/files/3raz5wx06</u> основные учебники (открытый доступ)

8.2 Перечень программного обеспечения и информационных справочных систем (при необходимости) для выполнения курсовой работы.

Перечень программного обеспечения и информационных справочных систем, применяемых в процессе обучения дисциплины «Теория механизмов и машин» при проведении лекционных занятий представлен в таблице 5.

Выполнение графической части курсовой работы возможно при помощи следующего программного обеспечения: Компас – 3D-V16, AutoCAD-2018.

Таблица 5 **Перечень программного обеспечения**

№ п/п	Наименование раздела учебной дисциплины (модуля)	Наименование программы	Тип Программы	Автор	Год разработки
1	Все разделы дисциплины	Компас – 3D	Учебная	Аскон	2018
2	Все разделы дисциплины	PowerPoint	Учебная	Microsoft Corporation	2010
	Все разделы дисциплины	Microsoft Word	Текстовый редактор	Microsoft Corporation	2010
	Все разделы дисциплины	Microsoft Excel	Редактор таблиц	Microsoft Corporation	2010

Методические указания разработал:	
Серов Н.В., д.т.н., доцент	
-	(подпись)

Приложение А

Пример оформления титульного листа курсовой работы

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

МСХА имени К.А. ТИМИРЯЗЕВА» (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Институт механики и энергетики имени В.П. Горякина Кафедра «Сопротивление материалов и детали машин»

ТЕОРИЯ МАШИН И МЕХАНИЗМОВ

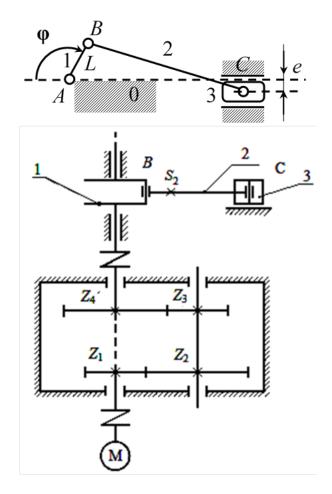
КУРСОВАЯ РАБОТА

на тему: «КИНЕТОСТАТИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМА»

Выполнил

обучающийся курс	агруппы
фио Дата регис на кафедре	
Допущен (а) н	с защите
Рук	оводитель:
ученая степень, ученое з	вание, ФИО
Члены	комиссии:
ученая степень, ученое звание, ФИО	подпись
ученая степень, ученое звание, ФИО	подпись
ученая степень, ученое звание, ФИО	подпись
Оценка	
Дата защиты	

Приложение Б Примерная форма задания


МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Российский государственный аграрный университет – МСХА имени К.А. Тимирязева

Институт механики и энергетики имени В.П. Горякина Кафедра «Сопротивление материалов и детали машин»

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Ст	удент
1.	Тема. «Кинетостатическое исследование механизма»
2.	Срок представления проекта к защите
3.	Исходные данные:

3.1. Структурные схемы привода и исполнительного механизма.

3.2. Вращательное движение от асинхронного электродвигателя передаётся через муфту на входной вал цилиндрического двухступенчатого соосного зубчатого редуктора. Первая ступень, называемая быстроходной,

образована шестерней с числом зубьев Z_1 и колесом с числом зубьев Z_2 на промежуточном валу. Вторая ступень (тихоходная) образована шестерней на промежуточном валу с числом зубьев Z_3 и колесом с числом зубьев Z_4 , смонтированным на выходном валу редуктора.

3.3. Кривошип 1, являющийся ведущим звеном, соединен шарниром B с шатуном 2, который в свою очередь шарниром C соединен с ползуном 3, являющимся ведомым звеном, связанным с рабочим органом машины.

Исходные данные

Вариан	$n_{\scriptscriptstyle \mathrm{M}}$	Z_1	Z_2	Z_3	Z_4	η	φ	\boldsymbol{L}	λ	m_2	$J_{ m S2}$	m 3	e
T	об/ми	-	-		-	-	гра	M	-	КГ	кг•м ²	КГ	M
	Н						Д						
76	2400	10	50	20	40	0.85	55	0.06	3.5	1.7	0.06	2.5	0

При исследовании механизма приняты следующие допущения:

- 1. Звенья механизма располагаются в одной плоскости.
- 2. Считаем, что силы трения в кинематических парах отсутствуют.

При проведения кинематического анализа решаются следующие задачи:

- **а)** Построение кинематической схемы механизма в заданном положении.
 - б) Определение угловых скоростей звеньев и скоростей их точек.
 - в) Определение угловых ускорений звеньев и ускорений их точек.

Руководитель пр	оекта				
	(дата, подпись)	_	(инициалы, фамили	я)	
Задание принял		‹ ‹	»	20	Γ
_	(подпись)		(дата)		

Приложение В

Примерная форма рецензии на курсовую работу

РЕЦЕНЗИЯ

на курсовую работу обучающегося

Федерального государственного бюджетного образовательного учреждения высшего образования «Российский государственный аграрный университет — MCXA имени К.А. Тимирязева»

Институт
Кафедра «Сопротивление материалов и детали машин»
Обучающийся
Kypc
Группа
Специальность
Специализация
Учебная дисциплина «Детали машин и основы конструирования»
Тема курсовой работы
Полнота раскрытия темы:
Оформление:
Замечания:
Курсовая работа отвечает предъявляемым к ней требованиям в заслуживает оценки.
Рецензент (фамилия, имя, отчество, уч.степень, уч.звание, должность, место работы)
Дата: «»20 г. Подпись:

Приложение Г Пример заполнения основной надписи (штампа) на чертежах

В графе 1 основной надписи (рис. 4) указывается название документа — «Расчетно-пояснительная записка». В графе 2 (рис. 4) — обозначение документа (шифр), например СМДМ 98.18.02.11.01.00, который обозначает: СМДМ — наименование кафедры «Сопротивление материалов и детали машин»; 98 - код кафедры; 18 — год выполнения проекта; 02 — номер задания; 11 — номер варианта числовых исходных данных; 01 — номер листа. Все остальные графы заполняют подобно графам основной надписи на листах чертежей. Оглавление расчетно-пояснительной записки: введение, разделы расчетной части, заключение и список использованной литературы начинают с нового листа. Нумерация страниц начинается с титульного листа, но номер на нем не ставится.

Рис. 4. Основная надпись по ГОСТ 2.10468 для первых листов чертежей и схем