Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Бенин Дмитрий Михайлович

Должность: И.о. директора института мелиорации, водного хозяйства и

строительства имени А.Н. Костякова Дата подписания: 17.07.2023 13:47:19 Уникальный программный ключ:

dcb6dc8315334aed86f2a7c3a0ce2cf217be1e29

УТВЕРЖДАЮ:

И.о. директора института мелиорации,

водного хозяйства и строительства

имени А.Н. Костякова

«30» августа 2022 г.

Бенин Д.М.//

тельства воека Востикана

#### Лист актуализации рабочей программы дисциплины <u>Б1.В.10 Статистическое и имитационное моделирование при обосновании</u> <u>режима и параметров водохозяйственных систем</u>

для подготовки магистров

Направление <u>20.04.02</u> Природообустройство и водопользование Направленность: <u>Насосы, насосные станции, водоснабжение, водоотведение и управление водными ресурсами</u>

Курс 1 Семестр 2

Форма обучения <u>очная</u>

Год начала подготовки: 2021

В рабочую программу вносятся следующие изменения:

Таблица 1

#### Требования к результатам освоения учебной дисциплины

| №<br>п/ | Код    | Содержание компетенции                                                                                                                                                                                                               | Индикаторы                                                                                        | В результате изучения учебной дисциплины обучающиеся должны:                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                        |  |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| п       | ии     | (или её части)                                                                                                                                                                                                                       | компетенций                                                                                       | знать                                                                                                                                                                                                                                                                                                             | уметь                                                                                                                                                                              | владеть                                                                                                                                                                                |  |
| 14030   | ПКос-1 | Способен<br>проводить<br>исследования по<br>повышению<br>эффективности<br>территориально -<br>временного<br>регулирования<br>стока,<br>сбережению<br>водных ресурсов,<br>в том числе с<br>учетом цифровых<br>средств и<br>технологий | ПКос-1.1 Знания методов регулирования стока, оптимизации режимов работы водохозяйствен ных систем | актуальные и<br>первоочередные<br>проблемы<br>водного хозяйства<br>и технологию<br>управления<br>водными<br>ресурсами на<br>принципах<br>рационального<br>использования<br>водных ресурсов<br>и предупреж-<br>дения негатив-<br>ного действия<br>вод, с примене-<br>нием цифровых<br>инструментов и<br>технологий | разрабатывать постановочную часть проектных задач, связанных с регулированием и территориальным перераспределением стока, совместным управлением трансграничными водными ресурсами | навыками<br>выполнения<br>экспертного<br>анализа<br>функциониров<br>ания водо-<br>хозяйственны<br>систем с<br>использование<br>м встроенных<br>функций и<br>надстроек в<br>среде Excel |  |
|         |        |                                                                                                                                                                                                                                      | ПКос-1.2<br>Умение<br>использовать                                                                | Реализуемые<br>схемы территори-<br>ально -                                                                                                                                                                                                                                                                        | Выполнять<br>статистическое<br>моделирование                                                                                                                                       | навыками<br>самостоятель-<br>ной                                                                                                                                                       |  |

|    |        |                                                                                                                                                                                                                                                                                                                                                                                                            | знания методов регулирования стока, оптимизации режимов работы водохозяйствен ных систем для проведения исследований по повышению эффективности территориальн о - временного регулирования                                               | временного перераспределени я стока применительно к различным режимам регулирования и типы моделей с учетом их классификационной принадлежности и области применения, учитывая                                                             | гидрологических рядов, как одиночных, так и взаимно-коррелированных , а также использовать программные средства для обработки результатов имитационного и стохастического моделирования                                                    | инженерной и математичес-кой постановки инженерно-гидрологических и водохозяйственных задач                                                                                                                                           |
|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | ПКос-2 | Способен к                                                                                                                                                                                                                                                                                                                                                                                                 | стока,<br>сбережению<br>водных<br>ресурсов<br>ПКос-2.2                                                                                                                                                                                   | информационные ресурсы и технологии  Расширенный                                                                                                                                                                                           | Формулировать                                                                                                                                                                                                                              | навыками                                                                                                                                                                                                                              |
|    |        | руководству<br>процессами<br>проектирования и<br>строительства<br>объектов<br>природнотехноген<br>ных систем,<br>обеспечению<br>контроля их<br>выполнения,<br>управлению<br>рисками,<br>соблюдению<br>требований<br>экологической<br>безопасности,<br>осуществлять на<br>основе<br>системного<br>подхода<br>критический<br>анализ<br>проблемных<br>ситуаций при<br>взаимодействии<br>человека и<br>природы | Умение использовать методы управления процессами для руководства процессами проектировани я и строительства объектов природно- техногенных систем, обеспечения контроля их выполнения и соблюдения требований экологической безопасности | перечень основных и частных гидрологоводохозяйственных актуальной водохозяйственной проблематике водообеспечение, защита от наводнений, экологическая безопасность решаемых с использованием имитационного и стохастического моделирования | математическую постановку проектной задачи на основе имитационного и стохастического моделирования, разрабатывать моделирующий алгоритм применительно к специфике имитационного и стохастического моделирования для выбора параметров ВХС. | генерации комплексной исходной информации и выбора инструментари я и разработки моделирующего алгоритма для последующего моделирования                                                                                                |
| 3. | Пкос-4 | Способен к организации и координации работы проектного подразделения, контроля сроков и качества разработки проектных решений.                                                                                                                                                                                                                                                                             | Пкос-4.2<br>Умение<br>использовать<br>знания<br>содержания<br>работы<br>проектного<br>подразделения<br>для<br>организации и<br>координации<br>его работы,<br>контроля<br>сроков и<br>качества<br>разработки<br>проектных                 | современные возможности компьютерных технологий, позволяющих автоматизировать расчетные методы обоснования проектных решений, связанных с протеканием природных процессов и режимами функционирования природно-                            | на основании<br>результатов<br>компьютерных<br>модельных<br>экспериментов<br>разрабатывать<br>рекомендации к<br>принятию<br>управленческих<br>решений                                                                                      | навыками<br>оформления,<br>представления<br>и обсуждения<br>результатов<br>профессиональ<br>ной<br>деятельности,<br>полученных в<br>ходе<br>использования<br>средств<br>моделирования<br>процесссов и<br>водохозяйстве<br>нных систем |

|                                                                        | решений.                        | технических<br>систем                     |                                    |                        |
|------------------------------------------------------------------------|---------------------------------|-------------------------------------------|------------------------------------|------------------------|
| Программа актуализиров                                                 | ана для 2022 г                  | . начала подгот                           | овки.                              |                        |
| Разработчики: Раткович 3                                               | Л.Д., д.т.н., пр                | офессор                                   | «29» августа                       | а 2022 г.              |
| Матвеева Т                                                             | Г.И., к.т.н., дог               | дент                                      | «29» августа                       |                        |
| Рабочая программа пере<br>гидрологии и управления                      | есмотрена и од<br>н водными рес | добрена на засе<br>урсами № <u>1</u> от « | едании кафедрь<br><29» августа 202 | ы Гидравлики,<br>22 г. |
| И.о. зав. кафедрой Гидра водными ресурсами Перминов А.В., доцент.,     |                                 | огии и управлен                           |                                    | вгуста 2022 г.         |
| Лист актуализации при                                                  | нят на хране                    | ние:                                      |                                    |                        |
| И.о. зав. кафедрой сельси и насосных станций Али М.С., доцент., к.т.н. |                                 | ого водоснабже                            | ения, водоотвед<br>«29» августа    |                        |

#### МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ



#### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

#### «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – МСХА имени К.А. ТИМИРЯЗЕВА» (ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Институт мелиорации, водного хозяйства и строительства имени А.Н. Костякова

Кафедра комплексного использования водных ресурсов и гидравлики

УТВЕРЖДАЮ:

И.о. директора института мелиорации, водного хозяйства и строительства имени А.Н. Костякова

Бенин Д.М.

20<del>2</del> г.

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

## <u>Б1.В.10 Статистическое и имитационное моделирование при обосновании</u> режима и параметров водохозяйственных систем

для подготовки магистров

#### ΦΓΟСΒΟ

Направление: 20.04.02 Природообустройство и водопользование

Направленность: Насосы, насосные станции, водоснабжение, водоотведение и

управление водными ресурсами

Курс 1 Семестр 2

Форма обучения: очная

Год начала подготовки 2021

Регистрационный номер

Москва, 2021

|      | Разработчики: Раткович Л.Д., д.т.н., профессор « <u>ds</u> » <u>08</u> 20 <u>2/</u> г.                                                                                                                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Матвеева Т.И., к.т.н. «25»                                                                                                                                                                                 |
|      | Рецензент: Исмайылов Г.Х., проф., д.т.н                                                                                                                                                                    |
| - 1  | тограмма составлена в соответствии с требованиями ФГОС ВО, ПООП торессионального стандарта № 686 от 26.05.2020 г. по направлению задотовки 20.04.02 Природообустройство и водопользование и учебного плана |
|      | Программа обсуждена на заседании кафедры протокол № 1 от «25 од 202/г.                                                                                                                                     |
| 1    | и о. заведующего кафедрой комплексного использования водных ресурсов и пидравлики Бакштанин А.М., к.т.н., доцент «мь» ов 201/г.                                                                            |
| -    | Согласовано: Председатель учебно-методической комиссии института Смирнов А.С., к.т.н., доцент  «Дь»                                                                                                        |
|      | И.о. заведующего выпускающей кафедры сельскохозяйственного водоснабжения, водоотведения, насосов и насосных станций Али М.С., к.т.н., доцент                                                               |
|      | Зав. отдела комплектования ЦНБ У Еригова З.В. (подпись)                                                                                                                                                    |
|      | Бумажный экземпляр РПД, копии электронных вариантов РПД и оценочных средств получены: Методический отдел УМУ                                                                                               |
| 1.71 |                                                                                                                                                                                                            |

#### **СОДЕРЖАНИЕ**

|                                                                                                                                                     | 4           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ                                                                                                                         | 4           |
| 2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ                                                                                                              | 5           |
| 3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛ<br>(МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ<br>ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ |             |
| 4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ                                                                                                                | 6           |
| 4.1 РАСПРЕДЕЛЕНИЕ ТРУДОЁМКОСТИ ДИСЦИПЛИНЫ ПО ВИДАМ РАБОТПО СЕМЕСТРАМ 4.2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ                                                      | 9           |
| 5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ                                                                                                                       | 15          |
| 6. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕС<br>ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ                                                             | ТАЦИЯ<br>16 |
| 6.1. Типовые контрольные задания или иные материалы, необходимые для оці знаний, умений и навыков и (или) опыта деятельности                        | 16<br>АЛ    |
| 7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ                                                                                      | 23          |
| 7.1 ОСНОВНАЯ ЛИТЕРАТУРА                                                                                                                             | 23<br>23    |
| 8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОНН<br>СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ<br>(МОДУЛЯ)                           | НОЙ         |
| 9. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)                                                         |             |
| 10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)                               | Ē           |
| 11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ<br>ДИСЦИПЛИНЫ                                                                                   | 25          |
| Виды и формы отработки пропущенных занятий Ошибка! Закладка не опредв                                                                               | ЕЛЕНА.      |
| 12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗ ОБУЧЕНИЯ ПО ЛИСПИПЛИНЕ                                                                      | ЗАЦИИ<br>26 |

#### Аннотация

рабочей программы учебной дисциплины **Б1.В.10 Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем** 

для подготовки магистров по направлению 20.04.02 Природообустройство и водопользование направленности Насосы, насосные станции, водоснабжение, водоотведение и управление водными ресурсами

**Цель освоения** дисциплины: освоение учащимися методологии инженерноматематической постановки и решения задач водохозяйственного проектирования и управления водными ресурсами на основе имитационного и оптимизационного моделирования, а также применения методов статистического моделирования природных процессов.

**Место** дисциплины в учебном плане: Дисциплина Б1.В.10 включена в вариативную часть, курс по выбору, учебного плана по направлению подготовки 20.04.02 Природообустройство и водопользование преподается на 1 курсе магистратуры во 2 семестре.

**Требования к результатам освоения дисциплины**: в результате освоения дисциплины формируются следующие профессиональные компетенции: ПКос-1.1; ПКос-1.2; ПКос-2.2; ПКос-4.2

Краткое содержание дисциплины: Приобретение знаний и умений в области моделирования математического c использованием математического инструментария для обработки и анализа состояния водохозяйственных систем. Изучение методологии моделирования природных и техногенных процессов. решения инженерных Получение навыков задач применением математических моделей применительно к проблемам водообеспечения, регулирования качества вод, предотвращения наводнений на паводкоопасных территориях, построения правил использования водных ресурсов водохранилищ. Использование средств оптимизации в условиях одно и Обоснование многокритериальном выборе. водоохранных мероприятий. Математическое моделирование водохозяйственных систем и влияющих на ее функционирование процессов, обоснование и принятие решений в условиях неопределенности. Выработка способности самостоятельной математической постановки водохозяйственных задач и построения несложных моделей и алгоритмов.

**Общая трудоемкость дисциплины** составляет 4 зачетные единицы (144 часа/ из них на практическую подготовку 4 часа).

Итоговый контроль: зачет с оценкой

#### 1. Цель освоения дисциплины

Основной целью курса «Статистическое и имитационное моделирование при водохозяйственных обосновании режима И параметров являетсяосвоение учащимися методологии инженерно-математической постановки и решения задач водохозяйственного проектирования и управления ресурсами на основе имитационного И оптимизационного водными моделирования, а также применения методов статистического моделирования природных процессов.

#### 2. Место дисциплины в учебном процессе

Дисциплина «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» относится к вариативной части Блока 1 «Дисциплины (модули)» учебного плана. Дисциплина «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» реализуется в соответствии с требованиями ФГОС, профессионального стандарта № 686 от 26.05.2020 г. ОПОП ВО и Учебного плана по направлению подготовки магистра20.04.02 Природообустройство и водопользование.

Предшествующими курсами, которых базируется на дисциплина «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» являются такие дисциплины бакалавриата, «Водохозяйственные как: системы водопользование», «Гидроинформатика», «Гидравлика водохозяйственных сооружений», «Регулирование речного стока», И3 дисциплин магистратуры: «Геоинформационные системы», «Системный анализ в управлении качеством природообустройства водопользования», И «Математическое моделирование процессов в компонентах природы».

Дисциплина «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» является основополагающей для изучения следующих дисциплин: «Основы математического моделирования систем водоснабжения и водоотведения» (3 курс»), «Гидротехнические системы водоснабжения и водоотведения» (4 курс), «Научно-исследовательская работа» (4 курс).

**Особенностью дисциплины** является необходимость применения компьютерных расчетов для решения основных и частных водохозяйственных задач, являющихся основой для проектирования водохозяйственных систем и управления водными ресурсами.

Значимость дисциплины обусловлена рассмотрением актуальных вопросов управления и проектирования ВХС, рассмотрением вопросов обоснования состава и структуры ВХС на основе современных методов водохозяйственного анализа; аспектов формирования структуры и обоснования режимов регулирования стока водохранилищами для правил использования водных ресурсов водохранилищ.

**Новизна** дисциплины связана с обучением студентов навыкам обоснования параметров ВХС и управления водными ресурсами

применительно к стратегии рационального водопользования; приобретению навыков имитационного и оптимизационного моделирования режимов и структуры BXC ДЛЯ выполнения вариантных расчетов балансов, ориентированных наиболее на поиск экономичных И экологически обусловленных проектов.

Рабочая программа дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учётом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

# 3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций, представленных в таблице 1.

#### 4. Структура и содержание дисциплины

## 4.1 Распределение трудоёмкости дисциплины по видам работ по семестрам

Общая трудоёмкость дисциплины составляет на 1 курсе во 2 семестре 4 зачетные единицы (144 часа), их распределение по видам работ представлено в таблице 2.

Таблица 1 **Требования к результатам освоения учебной дисциплины** 

| 3.0      | Код     | Содержание                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             | В результате изучени                                                                                                                                                                                                                                                                                                                                                                                         | я учебной дисциплины об                                                                                                                                                                                                                                                                                                                                                                                         | учающиеся должны:                                                                                                                                                                                                                                                   |
|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| №<br>п/п | компете | •                                                                                                                                       | Индикаторы компетенций (для 3++)                                                                                                                                                                                                                                                                                                                            | знать                                                                                                                                                                                                                                                                                                                                                                                                        | Уметь                                                                                                                                                                                                                                                                                                                                                                                                           | владеть                                                                                                                                                                                                                                                             |
| 2.       | ПКос-1  | Способен проводить исследования по повышению эффективности территориально - временного регулирования стока, сбережению водных ресурсов. | ПКос-1.1 Знания методов регулирования стока, оптимизации режимов работы водохозяйственных систем.  ПКос-1.2 Умение использовать знания методов регулирования стока, оптимизации режимов работы водохозяйственных систем для проведения исследований по повышению эффективности территориально - временного регулирования стока, сбережению водных ресурсов. | актуальные и первоочередные проблемы водного хозяйства и технологию управления водными ресурсами на принципах рационального использования водных ресурсов и предупреждения негативного действия вод  Реализуемые схемы территориально - временного перераспределения стока применительно к различным режимам регулирования и типы моделей с учетом их классификационной принадлежности и области применения. | разрабатывать постановочную часть проектных задач, связанных с регулированием и территориальным перераспределением стока, совместным управлением трансграничными водными ресурсами Выполнять статистическое моделирование гидрологических рядов, как одиночных, так и взаимнокоррелированных, а также использовать программмые средства для обработки результатов имитационного и стохастического моделирования | навыками выполнения экспертного анализа функционирования водохозяйственных систем с использованием встроенных функций и надстроек в среде Excel навыками самостоятельной инженерной и математической постановки инженерно-гидрологических и водохозяйственных задач |
| 3.       | ПКос-2  | водству процессами проектирования и строи-                                                                                              | ПКос-2.2<br>Умение использовать методы<br>управления процессами для ру-<br>ководства процессами проекти-<br>рования и строительства объек-<br>тов природно-техногенных си-<br>стем, обеспечения контроля их<br>выполнения и соблюдения тре-                                                                                                                 | Расширенный перечень основных и частных гидролого-водохозяйственных задач, свойственных актуальной водохозяйственной проблематике — водообеспечение, защита от наводнений, экологическая                                                                                                                                                                                                                     | Формулировать математическую постановку проектной задачи на основе имитационного и стохастического моделирования, разрабатывать моделирующий алгоритм применительно к специфике имитационного и стохастичес-                                                                                                                                                                                                    | навыками генерации комплексной исходной информации и выбора инструментария и разработки моделирующего алгоритма для последующего моделирования                                                                                                                      |

|   |        | контроля их выполнения, управлению рисками, соблюдению требований экологической безопасности, осуществлять на основе системного подхода критический анализ проблемных ситуаций при взаимодействии человека и природы | бований экологической безопасности                                                                                                                                                | безопасность - решаемых с использованием имитаци-онного и стохастического моделирования                                                                                                                                           | кого моделирования для выбора параметров ВХС.                                                                              |                                                                                                                                                                                       |
|---|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Пкос-4 | Способен к организации и координации работы проектного подразделения, контроля сроков и качества разработки проектных решений.                                                                                       | Пкос-4.2 Умение использовать знания содержания работы проектного подразделения для организации и координации его работы, контроля сроков и качества разработки проектных решений. | современные возможности компьютерных технологий, позволяющих автоматизировать расчетные методы обоснования проектных решений, связанных с протеканием природных процессов и режимами функционирования природно-технических систем | на основании результатов компьютерных модельных экспериментов разрабатывать рекомендации к принятию управленческих решений | навыками оформления, представления и обсуждения результатов профессиональной деятельности, полученных в ходе использования средств моделирования процессов и водохозяйственных систем |

Распределение трудоёмкости дисциплины по видам работ по семестрам

|                                                                                                                                                                                                                   | Трудоём          | Трудоёмкость               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|--|--|
| Вид учебной работы                                                                                                                                                                                                | час./ *<br>всего | в т.ч. в<br>семестре<br>№2 |  |  |
| Общая трудоёмкость дисциплины по учебному плану                                                                                                                                                                   | 144/4            | 144/4                      |  |  |
| 1. Контактная работа:                                                                                                                                                                                             | 74,35/4          | 74,35/4                    |  |  |
| Аудиторная работа                                                                                                                                                                                                 | 74,35/4          | 74,35/4                    |  |  |
| в том числе:                                                                                                                                                                                                      |                  |                            |  |  |
| лекции (Л)                                                                                                                                                                                                        | 30               | 30                         |  |  |
| практические занятия (ПЗ)                                                                                                                                                                                         | 44/4             | 44/4                       |  |  |
| контактная работа на промежуточном контроле (КРА)                                                                                                                                                                 | 0,35             | 0,35                       |  |  |
| 2. Самостоятельная работа (СРС)                                                                                                                                                                                   | 69,65            | 69,65                      |  |  |
| расчётно-графическая работа (РГР) (подготовка)                                                                                                                                                                    | 36               | 36                         |  |  |
| самостоятельное изучение разделов, самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и практическим занятиям, коллоквиумам и т.д.) | 24,65            | 24,65                      |  |  |
| Подготовка к зачёту с оценкой (контроль)                                                                                                                                                                          | 9                | 9                          |  |  |
| Вид промежуточного контроля:                                                                                                                                                                                      | зачёт с о        | ценкой                     |  |  |

<sup>\*</sup> в том числе практическая подготовка

#### 4.2 Содержание дисциплины

Таблица 3

#### Тематический план учебной дисциплины

| <b>Панманаранна раздалар и там</b>                                                                                     |       | Аудиторная работа |               |      | Риссупитериод              |  |
|------------------------------------------------------------------------------------------------------------------------|-------|-------------------|---------------|------|----------------------------|--|
| Наименование разделов и тем<br>дисциплин (укрупнёно)                                                                   | Всего | Л                 | ПЗ/<br>*всего | ПКР  | Внеаудиторная<br>работа СР |  |
| Модуль - 1. Теоретические основы и практика применения различных видов моделей                                         | 58    | 30                | -             | -    | 28                         |  |
| Модуль - 2. Примеры решения инженерно - гидрологических и водохозяйственных задач с применением математических моделей | 85,65 |                   | 44            |      | 41,65                      |  |
| контактная работа на промежуточном контроле (КРА)                                                                      | 0,35  |                   |               | 0,35 |                            |  |
| Итого по дисциплине                                                                                                    | 144   | 30                | 44            | 0,35 | 69,65                      |  |

<sup>\*</sup> в том числе практическая подготовка

## Модуль - 1. Теоретические основы и практика применения различных видов моделей

Teма 1. Актуальные и первоочередные проблемы водного хозяйства и современные технологии управления водными ресурсами

Проблемы современного водохозяйственного комплекса вполне конкретны и заложены в национальной программе развития ВХК и национальной водной

стратегии РФ. Это водообеспеченность отраслей экономики, регулирование и поддержание качества водных ресурсов и экологической устойчивости водных объектов, паводковая безопасность. Преодоление проблем связано с умением решать определенные инженерно-гидрологические и водохозяйственные задачи. В свою очередь решение указанных задач основано на различных способах моделирования.

Teма 2. Классификация используемых моделей в области управления водными ресурсами

Дается функциональная классификация моделей в общей постановке и непосредственно используемых в гидролого-водохозяйственной практике. Рассматриваются методические и структурные особенности детерминированние и стохастические, имитационные и оптимизационные, другие типы моделей. Анализируется область применения различных типов моделей.

*Тема 3. Основные и частные задачи в условиях функционирования водохозяйственных систем* 

Все профильные задачи можно классифицировать путем разделения их на две группы - основные и частные. Каждая группа в свою очередь содержит определенный набор задач, решаемых с использованием методов математического моделирования. В их числе

- определение гарантированной водоотдачи водохранилищ
- определение объема и режима водозабора в системах ТПС
- распределение располагаемых водных ресурсов между водопользователями
- режим пропуска половодий (паводков) через гидроузел
- имитация режимов санитарно-экологических попусков в нижний бьеф гидроузлов
- моделирование ситуаций на трансграничных бассейнах

Рассматривается специфика постановки задач и структуры адекватной модели. Тема 4. Моделирование ситуаций на трансграничных бассейнах

Проблемы трансграничных бассейнов — одно из важнейших направлений в области водного хозяйства. Здесь сосредоточены водохозяйственные, экологические, правовые, социальные и нравственные аспекты. Вырабатываются навыки выявления проблем, которые следует решать с использованием разного типа моделей.

Тема 5. Методика разработки моделирующих алгоритмов на основе перехода от дифференциальных уравнений к конечно-разностным методам реализации программных модулей

правило, процессы, естественные ИЛИ техногенные, описываются дифференциальными, либо регрессионными уравнениями. При аналитические решения очень редко достижимы и практически значимы. Поэтому, модельные реализации, использующие конечно-разностные методы и метод статистических испытаний (Монте-Карло), наиболее затребованы. Названные подходы рассматриваются как основа построения моделирующих алгоритмов.

## Модуль - 2. Примеры решения инженерно - гидрологических и водохозяйственных задач с применением математических моделей

Тема 6. Математическая постановка инженерно-гидрологических и водохозяйственных задач и подготовка исходной информации

Рассматриваются общие принципы формализации задачи. Структура и содержание блоков. Общие рекомендации к формированию базы данных. Анализ и презентация результатов моделирования, принципы ведения дискуссии

Teма 7. Задача распределения располагаемых водных ресурсов между водопользователями

Достаточно часто встречающаяся задача, как в проектной ситуации, так и в условиях нормальной эксплуатации. устанавливаются граничные условия, система ограничений, функции доходов отрасли. Отрабатывается моделирующий алгоритм и доводится до конкретного результата.

Тема 8. Моделирование парных коррелированных гидрологических рядов

В качестве статистической модели годового стока принимается линейная авторегрессия первого порядка (простая цепь Маркова) между значениями обеспеченностей смежных лет. В качестве безусловного принимается трехпараметрическое гамма-распределение. Парная корреляция учитывается с помощью бета-распределения по методике Ратковича Л.Д.

Тема 9. Определение гарантированной водоотдачи водохранилища с использованием оптимизации

Рассчитывается гарантированная отдача водохранилищ при установленных критериях удовлетворения требований по обеспеченности и глубине перебоев. Простраиваются анализирующие зависимости. Выделяется область оптимальных решений.

Тема 10. Определение объема и режима водозабора в системах ТПС

водозабора Определение объемов И режима решается помощью имитационной В учитывается модели. модели множество факторов: допустимые производительность водозаборных остаточные расходы, сооружений, режим отбора и т.д. По результатам модельных экспериментов строятся номограммы связи влияющих параметров.

Тема 11. Моделирование режима пропуска половодий (паводков) гидроузел. Моделируются морфометрические характеристики верхнего и нижнего бьефов гидроузла, режим трансформации волны половодья (паводка), оценка обстановки в нижнем бъефе гидроузла. Простраивается имитационный режим с заданным набором параметров. Имитационная модель позволяет сделать к оптимальному режим сбросов соответствующий режим близкий И затворами применительно маневрирования К VСЛОВИЯМ регулируемого водосброса.

Тема 12. Моделирование ситуации в трансграничных и пограничных створах Возможные ситуации на трансграничных водных объектах разыгрываются в зависимости от конкретных особенностей объекта. Разделяются ситуации в пограничных и трансграничных створах. Цель имитационного моделирования — максимальный набор информации для принятия наиболее приемлемого решения для субъектов совместного использования водных ресурсов.

Тема 13. Имитационное моделирование формирования качества воды в расчетном створе и обоснование санитарно-экологических попусков (допустимых расходов при отсутствии водохранилищных гидроузлов).

В рамках имитационного регулирования совместно моделируются уравнения водохозяйственного и гидрохимического балансов. Оценка качества воды ставится в соответствие с набором водохозяйственных и водоохранных мероприятий. Решается задача обоснования мероприятий, либо повышения водности для улучшения качества вод.

#### 4.3 Лекции и семинарские занятия

Таблица 4

Содержание лекций и семинарских занятий и контрольные мероприятия

| №<br>п/п | № раздела | № и название<br>лекций/семинарских занятий                                                                                                     | Формируемые<br>компетенции                 | Вид<br>контрольного<br>мероприятия | Кол-во часов из них практиче ская подготов ка |
|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|-----------------------------------------------|
| 1.       |           | . Теоретические основы и практи                                                                                                                | са применения ра                           | зличных видов м                    | оделей                                        |
|          | Тема 1.   | Лекция № 1. Актуальные и первоочередные проблемы водного хозяйства и современные технологии управления водными ресурсами                       | ПКос-1:<br>ПКос-1.1                        | Устный опрос                       | 2                                             |
|          | Тема 2.   | Лекция № 2. Классификация используемых моделей в области управления водными ресурсами                                                          | ПКос-1:<br>ПКос-1.1<br>ПКос-1.2            | Устный опрос                       | 2                                             |
|          |           | Лекция № 3 Стохастические модели речного стока                                                                                                 | ПКос-2:<br>ПКос-2.2                        |                                    | 2                                             |
|          |           | Лекция № 4 Имитационное моделирование при решении инженерно-гидрологических и водохозяйственных задач                                          |                                            |                                    | 4                                             |
|          |           | Лекция № 5 Оптимизационные алгоритмы в имитационных моделях                                                                                    |                                            |                                    | 2                                             |
|          | Тема 3.   | Лекция № 6. Основные и частные задачи в условиях функци-<br>онирования водохозяйственных систем                                                |                                            | Контрольная<br>работа              | 4                                             |
|          |           | Лекция № 7. Распределение располагаемых водных ресурсов между водопользователями на стадии проектирования и в режиме эксплуатации водохранилищ | ПКос-2:<br>ПКос-2.2<br>Пкос-4:<br>Пкос-4.2 |                                    | 2                                             |
|          |           | Лекция № 8. Моделирование пропуска половодий (паводков) через гидроузел                                                                        |                                            |                                    | 2                                             |

| №<br>п/п | № раздела | № и название<br>лекций/семинарских занятий                                                                                                                            | Формируемые<br>компетенции                 | Вид<br>контрольного<br>мероприятия | Кол-во часов из них практиче ская подготов ка |
|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|-----------------------------------------------|
|          |           | Лекция № 9. Моделирование комплексных попусков из водохранилищ                                                                                                        |                                            |                                    | 2                                             |
|          | Тема 4.   | Лекция № 10. Моделирование ситуаций на трансграничных реках                                                                                                           | ПКос-2:<br>ПКос-2.2<br>Пкос-4:<br>Пкос-4.2 | Лекция-<br>дискуссия               | 4                                             |
|          | Тема 5.   | Лекция № 11. Методика разработки моделирующих алгоритмов на основе перехода от дифференциальных уравнений к конечно-разностным методам реализации программных модулей | ПКос-1:<br>ПКос-1.1                        | Практическая работа под контролем  | 4                                             |
| 2        | Модуль -  | 2. Примеры решения инженерно задач с применением мат                                                                                                                  | _                                          |                                    | енных                                         |
|          | Тема 6.   | Практическая работа № 1. Математическая постановка инженерно-гидрологических и водохозяйственных задач и подготовка исходной информации                               | ПКос-1:<br>ПКос-1.1                        | решение типовых задач              | 4                                             |
|          | Тема 7.   | Практическая работа № 2. Задача распределения располагаемых водных ресурсов между водопользователям                                                                   | ПКос-1:<br>ПКос-1.1<br>ПКос-1.2            | решение<br>типовых задач           | 4                                             |
|          | Тема 8.   | Практическая работа № 3. Моделирование парных коррелированных гидрологических рядов                                                                                   | ПКос-1:<br>ПКос-1.1<br>ПКос-1.2            | решение<br>типовых задач           | 4                                             |
|          | Тема 9.   | Практическая работа № 4,5<br>Определение гарантированной<br>водоотдачи водохранилища с<br>использованием оптимизации.<br>Критении имитационного<br>моделирования      | ПКос-1:<br>ПКос-1.1                        | решение<br>типовых задач           | 8                                             |
|          | Тема 10.  | Практическая работа № 6.<br>Определение объема и режима<br>водозабора в системах ТПС                                                                                  | ПКос-1:<br>ПКос-1.2                        | решение<br>типовых задач           | 4                                             |
|          | Тема 11.  | Практическая работа № 7. Моделирование режима пропуска половодий (паводков) через гидроузел.                                                                          | ПКос-2:<br>ПКос-2.2                        | решение<br>типовых задач           | 8                                             |
|          | Тема 12.  | Практическая работа № 8,9. Моделирование ситуации в трансграничных и пограничных створах                                                                              | ПКос-1:<br>ПКос-1.1                        | решение<br>типовых задач           | 4                                             |
|          | Тема 13.  | Практическая работа № 10,11.<br>Имитационное моделирование                                                                                                            | ПКос-1:                                    | решение<br>типовых задач           | 8                                             |

| №<br>п/п           | № раздела | № и название<br>лекций/семинарских занятий                                                    | <b>Формируемые</b> компетенции              | Вид<br>контрольного<br>мероприятия | Кол-во часов из них практиче ская подготов ка |
|--------------------|-----------|-----------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------|-----------------------------------------------|
|                    |           | формирования качества воды в расчетном створе и обоснование санитарно-экологических попусков. | ПКос-1.1<br>ПКос-1.2<br>Пкос-4:<br>Пкос-4.2 |                                    |                                               |
| Всего за 2 семестр |           |                                                                                               |                                             |                                    | 74/44                                         |

#### Таблица 5

Перечень вопросов для самостоятельного изучения дисциплины

| N₂     |                                     | Перечень рассматриваемых вопросов для             |  |  |
|--------|-------------------------------------|---------------------------------------------------|--|--|
| п/п    | № раздела и темы                    | самостоятельного изучения                         |  |  |
| 11/ 11 | Молуль - 1. Теоретические основы и  | практика применения различных видов моделей       |  |  |
| 1.     | Тема 1. Актуальные и                | Проблемы современного водохозяйственного          |  |  |
| 1.0    | первоочередные проблемы водного     | комплекса. Преодоление проблем. Способы           |  |  |
|        | хозяйства и современные технологии  | моделирования для принятия решений. (ПКос-1.1)    |  |  |
|        | управления водными ресурсами        | modernia den ubinimi benerimi (11100-111)         |  |  |
| 2.     | Тема 2. Классификация используемых  | Функциональная классификация моделей в общей      |  |  |
|        | моделей в области управления        | постановке и непосредственно используемых в       |  |  |
|        | водными ресурсами                   | гидролого-водохозяйственной практике.             |  |  |
|        | F 2 F                               | Методические и структурные особенности            |  |  |
|        |                                     | детерминированных, стохастических,                |  |  |
|        |                                     | имитационных и оптимизационных, другие типы       |  |  |
|        |                                     | моделей. Анализ области применения различных      |  |  |
|        |                                     | типов моделей. (ПКос-1.1, ПКос-1.2, ПКос-2.2)     |  |  |
| 3.     | Тема 3. Основные и локальные задачи | Профильные задачи, их классификация. Набор задач, |  |  |
|        | в условиях функционирования         | решаемых с использованием методов                 |  |  |
|        | различных водохозяйственных         | математического моделирования.                    |  |  |
|        | комплексов                          | (ПКос-2.2, Пкос-4.2)                              |  |  |
| 4.     | Тема 4. Моделирование ситуаций на   | Проблемы трансграничных бассейнов.                |  |  |
|        | трансграничных бассейнах            | Сосредоточенные водохозяйственные, экологические, |  |  |
|        |                                     | правовые, социальные и нравственные аспекты.      |  |  |
|        |                                     | (ПКос-2.2, Пкос-4.2)                              |  |  |
| 5.     | Тема 5. Методика разработки         | Основные подходы решения задач как основа         |  |  |
|        | моделирующих алгоритмов на основе   | построения моделирующих алгоритмов. (ПКос-1.1)    |  |  |
|        | перехода от дифференциальных        |                                                   |  |  |
|        | уравнений к конечно-разностным      |                                                   |  |  |
|        | методам реализации программных      |                                                   |  |  |
|        | модулей                             |                                                   |  |  |
|        |                                     | нерно - гидрологических и водохозяйственных       |  |  |
|        | задач с применением математически   |                                                   |  |  |
| 6      | Тема 6. Математическая постановка   | Общие рекомендации к формированию базы данных.    |  |  |
|        | инженерно - гидрологических и       | Анализ и презентация результатов моделирования,   |  |  |
|        | водохозяйственных задач и           | принципы ведения дискуссии. (ПКос-1.1)            |  |  |
|        | подготовка исходной информации.     |                                                   |  |  |
| 7      | Тема 7. Задача распределения        | Установление граничных условий, система           |  |  |
|        | располагаемых водных ресурсов       | ограничений, ( $\Pi Koc$ -1.1, $\Pi Koc$ -1.2)    |  |  |
|        | между водопользователями            |                                                   |  |  |
| 8      | Тема 8. Моделирование парных        | Линейная авторегрессия первого порядка (простая   |  |  |

| №<br>п/п | № раздела и темы                                                                                                                                                                                  | Перечень рассматриваемых вопросов для<br>самостоятельного изучения                                                        |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
|          | коррелированных гидрологических рядов                                                                                                                                                             | цепь Маркова). Парная корреляция. (ПКос-1.1, ПКос-1.2)                                                                    |  |
| 9        | Тема 9. Определение гарантированной водоотдачи водохранилища с использованием оптимизации                                                                                                         | Построение анализирующих зависимостей. Область оптимальных решений. (ПКос-1.1)                                            |  |
| 10       | Тема 10. Определение объема и режима водозабора в системах ТПС                                                                                                                                    | Определение объемов и режима водозабора (ПКос-1.2)                                                                        |  |
| 11       | Тема 11. Моделирование режима пропуска половодий (паводков) через гидроузел.                                                                                                                      | Имитационное моделирование. (ПКос-2.2)                                                                                    |  |
| 12       | Тема 12. Моделирование ситуации в трансграничных и пограничных створах                                                                                                                            | Возможные ситуации на трансграничных водных объектах. Цель имитационного моделирования (ПКос-1.1)                         |  |
| 13       | Тема 13. Имитационное моделирование формирования качества воды в расчетном створе и обоснование санитарно-экологических попусков (допустимых расходов при отсутствии водохранилищных гидроузлов). | Оценка качества воды в соответствие с набором водохозяйственных и водоохранных мероприятий. (ПКос-1.1, ПКос-1.2,Пкос-4.2) |  |

#### 5. Образовательные технологии

В университете имеется компьютерный класс, где могут выполняться необходимые расчеты, и проводится поиск необходимой информации. Контроль выполнения работ и степень освоения теоретического материала проводится непосредственно на занятиях. При изучении дисциплины ведутся работы по созданию тематической базы презентации в Microsoft Office Power Point.

Таблица 6 Применение активных и интерактивных образовательных технологий

| <b>№</b><br>п/п | Тема и форма занятия                 |   | Наименование используемых активных и интерактивных образовательных технологий |
|-----------------|--------------------------------------|---|-------------------------------------------------------------------------------|
| 1               | Актуальные и первоочередные          | Л | Технология активного обучения в форме                                         |
|                 | проблемы водного хозяйства и         |   | «проблемная лекция»                                                           |
|                 | современные технологии управления    |   |                                                                               |
|                 | водными ресурсами                    |   |                                                                               |
| 2               | Математическая постановка Ј          |   | Технология активного обучения в форме                                         |
|                 | инженерно - гидрологических и        |   | «лекция визуализация»                                                         |
|                 | водохозяйственных задач и            |   |                                                                               |
|                 | подготовка исходной информации.      |   |                                                                               |
| 3               | Задача распределения располагаемых Л |   | Технология активного обучения в форме                                         |
|                 | водных ресурсов между                |   | «лекция-диалог»                                                               |
|                 | водопользователями                   |   |                                                                               |
| 4               | Моделирование режима пропуска Л      |   | Технология активного обучения в форме                                         |
|                 | половодий (паводков) через           |   | «проблемная лекция»                                                           |

| №<br>п/п | Тема и форма занятия                                               |  | Наименование используемых активных и интерактивных образовательных технологий |
|----------|--------------------------------------------------------------------|--|-------------------------------------------------------------------------------|
|          | гидроузел.                                                         |  |                                                                               |
| 5        | Моделирование ситуации в Л<br>трансграничных и пограничных створах |  | Технология активного обучения в форме «проблемная лекция»                     |

## 6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

## 6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности

**Текущий контроль** студентов —осуществляется с помощью следующих форм:

- ✓ учет посещений и работы на лекционных и практических занятиях,
- ✓ контрольная работа
- ✓ решение типовых задач.

Целью всех форм контроля является проверка уровня освоения студентами дисциплины и проводится на протяжении всего учебного семестра.

Самостоятельная работа по курсу оценивается по результатам изучения текущих и дополнительных теоретических вопросов, по подготовке к тестированию и решению типовых задач. При самостоятельном изучении вопросов по дисциплине следует пользоваться источниками из списка литературы, приведенного в рабочей программе.

**Промежуточная аттестация** проводится в соответствии с Положением о текущем контроле и промежуточной аттестации.

Промежуточная аттестация осуществляется в конце семестра и включает:

✓ выполнение и защиту РГР, проведение зачёта с оценкой.

К зачету с оценкой допускаются студенты, выполнившие контрольную работу и защитившие расчетно-графическую работу. При подготовке к сдаче зачета с оценкой рекомендуется пользоваться записями, сделанными на лекционных и практических занятиях, а также в ходе текущей самостоятельной работы, выполненной расчетно-графической работы. Зачет проводится в устной форме и включает в себя ответ студента на теоретические вопросы. По его итогам выставляется «зачет» с соответствующей оценкой или «незачет».

Примерная тематика расчетно-графических работ

На практических занятиях по данной дисциплине предусматривается выполнение РГР с возможными темами:

- а) Трансформация максимального стока через гидроузел.
- b) Моделирование условий верхнего и нижнего бьефа в зависимости от ущерба, наносимого наводнениями
- с) Моделирование гидрографа экстремальных половодий

Вопросы для подготовки к контрольным мероприятиям (текущий контроль)

#### Задачи для подготовки к текущему контролю

- 1. Рассчитать приближенную зависимость расхода поверхностного водосброса и объема форсировки заданного водохранилища
- 2. Смоделировать расчет мертвого объема водохранилища с заданной батиграфией и средним значением мутности потока
- 3. Рассчитать зависимость показателя качества водных ресурсов в зависимости от степени очистки промышленных стоков с заданным ПДК
- 4. Рассчитать величину мертвого объема как функцию минимальной гарантированной водоподачи
- 5. Используя батиграфическую зависимость водоема установить уровень тяготения в заданной антропогенной обстановке

Вопросы к защите расчетно-графической работы

#### Методы стохастического моделирования гидрологических рядов:

вид модели алгоритм модели

#### Имитационное моделирование при расчетах водохозяйственных балансов

при сезонном регулировании

при многолетнем регулировании

с элементами оптимизации

## Имитационное моделирование половодий, используя функции распределение

приближенное по треугольнику (Кочерин Н.И.)

с использованием Бета - распределения

**Имитационное моделирование** трансформации максимального стока через гидроузел

**Применение оптимизационного алгоритма** для минимизации максимального расхода

Перечень вопросов, выносимых на промежуточную аттестацию (зачет с оценкой)

#### Вопросы к теме 1:

1. Актуальные задачи водного хозяйства, которые могут быть решены с использованием компьютерного моделирования

#### Вопросы к теме 2:

- 2. Представьте классификацию моделей, применяемых в водном хозяйстве
- 3. Что такое стохастические и имитационные модели, область их применения
- 4. Детерминистические модели в гидрологии
- 5. Имитационное моделирование-как инструмент системного анализа
- 5. Гидродинамические модели в задаче трансформации стока по длине реки Вопросы к теме 3:
- 6. Возможности применения моделей для решения общих и частных водохозяйственных задач

- 7. Моделирование многолетних гидрологических рядов
- 8. Использование многолетних рядов для водохозяйственных расчетов
- 9. Математическая постановка задач определение гарантированной водоотдачи водохранилищ
- 10. Математическая постановка задачи определение объема и режима водозабора в системах ТПС
- 11. Математическая постановка задачи пропуска половодий через гидроузел

#### Вопросы к теме 4.

- 12. Моделирование ситуаций на трансграничных реках
- 13. Постановка задач и методика решения в условиях совместного использования водных ресурсов странами –партнерами

#### Вопросы к теме 5.

- 14. Записать уравнение регрессии в общем виде
- 15. Описать стохастическую модель стока в рамках регрессии первого порядка
- 16. В чем суть метода Монте-Карло

#### Вопросы к теме 6.

- 17. Общие принципы формализации задачи.
- 18. Структура и содержание блоков имитационной модели.
- 19. Формирование базы данных для моделирования.
- 20. Форма презентация результатов моделирования.

#### Вопросы к теме 7.

21. Каковы принципы и методика распределения располагаемых водных ресурсов

между водопользователями

- 22. Разница в постановке задачи между проектным и эксплуатационным случаями
- 23. Моделирование взаимосвязанных гидрологических рядов

#### Вопросы к теме 8.

24. Моделирование критериев удовлетворения требований водопользователей в отечественной и зарубежной практике

#### Вопросы к теме 9.

Построение анализирующей зависимости  $\beta = f(\alpha)$  при различных системах критериев покрытия

#### Вопросы к теме 10.

Модель изъятия части стока для переброски в дефицитные районы:

факторы, влияющие на режим и объем переброски

учет зимнего режима

Моделирующий алгоритм

#### Вопросы к теме 11.

Алгоритм моделирования условий верхнего и нижнего бьефов противопаводковых водохранилищ

Моделирование формы гидрографа по параметрам входного притока

Имитационно-оптимизационный алгоритм моделирования трансформации максимального стока через гидроузел

#### Вопросы к теме 12.

Имитационный алгоритм для трансграничных и пограничных ситуаций

#### Вопрос к теме 13.

Моделирование параметров мероприятий для улучшения качества водных ресурсов с учетом санитарно-экологических требований

#### Тестирование

#### І. ЗАДАНИЯ С ВЫБОРОМ НЕСКОЛЬКИХ ПРАВИЛЬНЫХ ОТВЕТОВ

Нажимайте на клавиши с номерами всех правильных ответов

- 1. Какие типы моделей используются в водохозяйственной практике
  - 1) стохастические
  - 2) имитационные
  - 3) детерминированные
  - 4) оптимизационные
  - 5) поведения
- 2. Что дает моделирование в процессе водохозяйственного проектирования
  - 1) воспроизведение процесса или обстановки
  - 2) единственное решение
  - 3) множество решений для рационального выбора показателей или параметров задачи
  - 4) более надежный результат по сравнению с традиционными методами
  - 5) увеличение числа проектировщиков
- 3. Какие типы распределений обычно используются для моделирования годового стока
  - 1) Пуассона
  - 2) Бернулли
  - 3) Нормальное распределение
  - 4) Пирсона III типа
  - 5) Трех параметрическое распределение С.Н. Крицкого М.Ф. Менкеля
- 4. Что достигается с помощью имитационных водохозяйственных моделей
  - 1) увеличение зарплаты проектировщиков
  - 2) множество оптимальных решений
  - 3) мгновенное получение результата
  - 4) получение функциональной зависимости между стоком и испарением
  - 5) воспроизведение естественных или техногенных процессов

#### **II. ЗАДАНИЯ НА УСТАНОВЛЕНИЕ СООТВЕТСТВИЯ**

#### 7. Установите соответствие

| № | понятия      | $N_{\underline{0}}$ | ОПРЕДЕЛЕНИЯ                                         |
|---|--------------|---------------------|-----------------------------------------------------|
| 1 | Алгоритм     | 1                   | Математическая модель, описывающая движение воды    |
|   |              |                     | в разных средах, или имитирующая прохождение        |
|   |              |                     | речного стока по длине реки, или движение подземных |
|   |              |                     | вод                                                 |
| 2 | Имитационная | 2                   | Математическая модель, передающая характерную       |
|   | модель       |                     | вероятностную сущность исследуемого процесса, с     |
|   |              |                     | целью проведения массовых статистических            |
|   |              |                     | испытаний                                           |

| 3 | Стохастическая    | 3 | Последовательности действий, приводящих к          |
|---|-------------------|---|----------------------------------------------------|
|   | модель            |   | получению результата, или создания модели          |
| 4 | Гидродинамическая | 4 | Модель, которая с достаточной точностью воссоздает |
|   | модель            |   | природный или технический процесс в условиях       |
|   |                   |   | разных видов воздействия.                          |

Ответы: 1, 2, 3.

# III. СИСТЕМЫ ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ ЦЕПНОЕ ЗАДАНИЕ (дорабатывается, в настоящее время используется тестовое задание дисциплины КИВР): НАХОЖДЕНИЕ ПОЛЕЗНОЙ ЕМКОСТИ ВОДОХРАНИЛИЩА

Годовое водопотребление близко к стоку года расчетной обеспеченности, но не превышает его

Годовой сток расчетного года меньше годового водопотребления Годовой сток расчетного года много выше годового водопотребления, а внутригодовой режим стока соответствует режиму водопотребления

## 6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Для оценки знаний, умений, навыков и формирования компетенции по дисциплине применяется традиционная система контроля и оценки успеваемости студентов.

**Оценка успеваемости** складывается из следующих оценочных компонентов:

- оформление расчетно-графической работы (соответствие ГОСТ 7.32-2001, ГОСТ 7.1-2003, ГОСТ 7.12-93, ГОСТ 7.82-2001);
- правильность расчетов (оценивается округление величин, точность расчетов, использование программных средств);
- подробность и точность подписей к рисункам и таблицам, выбор формул и описание их составляющих, постановка задачи во введении к работе, выводы в конце расчетных глав и всей работы;
- устный ответы на вопросы (оценивается знание определений, алгоритмов вычислений, обоснованность ответов, и применение знаний для решения задач).

Итоговая оценка определяется как среднее арифметическое из оценок компонентов (отлично, хорошо, удовлетворительно, и неудовлетворительно).

Критерии оценивания типовых задач

Таблица 7а

| Оценка/сформированные компетен- | Критерии оценивания                                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ции                             |                                                                                                                   |
| Высокий уровень/зачет           | Все типовые задачи выполнены без ошибок и недочетов. Сформированы все умения и навыки решения практических задач. |
|                                 | Компетенции, закреплённые за дисциплиной,                                                                         |

|                             | сформированы на уровне – высокий.            |
|-----------------------------|----------------------------------------------|
| Средний уровень /зачет      | Типовые задачи выполнены полностью. Сфор-    |
|                             | мированы все умения и навыки решения практи- |
|                             | ческих задач.                                |
|                             | Компетенции, закреплённые за дисциплиной,    |
|                             | сформированы на уровне – хороший (сред-      |
|                             | ний).                                        |
| Пороговый уровень/зачет     | Типовые задачи выполнены частично. Частично  |
|                             | сформированы умения и навыки решения прак-   |
|                             | тических задач.                              |
|                             | Компетенции, закреплённые за дисциплиной,    |
|                             | сформированы на уровне – достаточный.        |
| Минимальный уровень/незачет | Правильно выполнены менее половины типовых   |
|                             | задач.                                       |
|                             | Компетенции, закреплённые за дисциплиной,    |
|                             | не сформированы.                             |

Таблица 7б

#### Критерии оценивания текущей успеваемости в форме контрольной работы

| Оценка/сформированные   | Критерии оценивания                                            |
|-------------------------|----------------------------------------------------------------|
| компетенции             |                                                                |
| Высокий уровень         | ставится за работу, выполненную без ошибок и недочетов или     |
| «5»(отлично)            | имеющую не более одного недочета. Компетенции,                 |
| «э»(оплично)            | закреплённые за дисциплиной, сформированы на уровне –          |
|                         | высокий.                                                       |
|                         | ставится за работу, выполненную полностью, но при наличии в    |
| Средний уровень         | ней не более одной негрубой ошибки и одного недочета или не    |
| «4»(хорошо)             | более двух недочетов. Компетенции, закреплённые за             |
|                         | дисциплиной, сформированы на уровне – хороший                  |
|                         | (средний).                                                     |
|                         | ставится в том случае, если студент правильно выполнил не      |
| Пороговый уровень «3»   | менее половины работы или допустил: а) не более двух грубых    |
| (удовлетворительно)     | ошибок, б) не более одной грубой ошибки и одного недочета, в)  |
| (удовлетворительно)     | не более двух-трех негрубых ошибок, г) одной негрубой ошибки   |
|                         | и трех недочетов, д) или при отсутствии ошибок, но при наличии |
|                         | 4-5 недочетов. Компетенции, закреплённые за дисциплиной,       |
|                         | сформированы на уровне – достаточный.                          |
| Минимальный уровень «2» | ставится, когда число ошибок и недочетов превосходит норму,    |
| (неудовлетворительно)   | при которой может быть выставлена оценка «3», или если         |
|                         | правильно выполнено менее половины работы. Компетенции,        |
|                         | закреплённые за дисциплиной, не сформированы.                  |

Грубыми являются ошибки, свидетельствующие, что студент: не усвоил основные физические теории и законы или не умеет применять их при решении задач различных типов; не знает формул, графиков, схем или не умеет применять их к решениям задач; не знает единиц физических величин или не умеет пользоваться ими; к грубым ошибкам относятся также неправильно сформулированные вопросы задачи или неверные объяснения хода ее решения, незнание приемов решения задач, аналогичных ранее решенным в классе, а также ошибки, свидетельствующие о неправильном понимании условия задачи или истолковании решения.

Негрубыми ошибками являются: неточность чертежа, графика, схемы; пропуск или неточное написание наименования единиц физических величин; выбор нерационального хода решения.

К недочетам относятся: нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решений задач; отдельные погрешности в формулировке вопроса или ответа; отдельные ошибки вычислительного характера; небрежное выполнение записей, чертежей, схем, графиков.

Критерии оценки знаний студентов на зачете с оценкой

Таблица 8

Критерии оценивания результатов обучения

| Оценка/                                          | Критерии оценивания результатов обучения  Критерии оценивания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| сформированные                                   | критерии оценивания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| компетенции                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Высокий уровень/<br>«5» отлично, зачёт           | «Зачет» с оценкой «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший РГР на высоком качественном уровне; а так же усвоивший взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии и проявивший творческие способности в понимании, изложении и использовании учебно-программного материала. При этом обнаруживается:  • всестороннее, систематическое и глубокое знание учебного материала,  • умение выполнять задания, предусмотренные программой,  • усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой практические навыки профессионального применения освоенных знаний сформированы. Компетенции, закреплённые за дисциплиной, сформированы на уровне — высокий. |
| Средний уровень<br>/ «4» хорошо, зачёт           | «Зачет» с оценкой «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены на высокий уровень (выполнивший РГР на среднем качественном уровне), показывающий систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности. При этом обнаруживается:  • полное знание учебно-программного материала  • успешно выполняющий предусмотренные в программе задания  • усвоивший основную литературу, рекомендованную в программе в основном сформировал практические навыки. Компетенции, закреплённые за дисциплиной, сформированы на уровне – хороший (средний).                                             |
| Пороговый уровень / «З» удовлетворительно, зачёт | «Зачет» с оценкой «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, РГР оценена на пороговом уровне, обнаруживаются знания и понимание основных положений учебного материала, но излагается он неполно, непоследовательно, допускаются неточности в определении понятий, не умеет доказательно обосновывать свои суждения, допускает погрешности в ответе на зачете и при выполнении заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя. При этом обнаруживаются:  • знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по                                                                                               |

|                                                                    | <ul> <li>специальности</li> <li>справляющийся с выполнением заданий, предусмотренных программой</li> <li>знакомый с основной литературой, рекомендованной программой некоторые практические навыки не сформированы. Компетенции, закреплённые за дисциплиной, сформированы на уровне – достаточный.</li> </ul>                                                                                                                                                                    |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Минимальный<br>уровень/ «2»<br>неудовлетворите-<br>льно<br>Незачет | оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, не выполнивший РГР, имеет разрозненные, бессистемные знания, не умеет выделять главное и второстепенное, допускает ошибки в определении понятий, а такжедоспускает принципиальные ошибки в выполнении предусмотренных программой заданий, искажает их смысл, практические навыки не сформированы. Компетенции, закреплённые за дисциплиной, не сформированы. |

#### 7. Учебно-методическое и информационное обеспечение дисциплины

#### 7.1 Основная литература

- 1. Водохозяйственные системы и водопользование. ИНФРА-М. 2019 год. 480 с. Учебник под редакцией проф. Ратковича Л.Д. и проф. Маркина В.Н. Е-mail: (50 шт)
- 2. Маркин В.Н., Раткович Л.Д., Глазунова И.В. Особенности методологии комплексного водопользования М-во сельского хоз-ва Российской Федерации, РГАУ МСХА им. К.А. Тимирязева. Москва: Изд-во РГАУ-МСХА, 2016. 116 с. http://elib.timacad.ru/dl/local/396.pdf/view
- 3. Раткович Л.Д., Маркин В.Н., Глазунова И.В. Вопросы рационального использования водных ресурсов и проектного обоснования водохозяйственных систем. ФГБОУ ВПО МГУП, 2013, 258 с. http://elib.timacad.ru/dl/local/pr06.pdf/view
- 4. Шабанов В.В., Маркин В.Н. Методика эколого-водохозяйственной оценки водных объектов. Москва. 2009. **(39 шт)**
- 5. Акопов, А. С. А40 Имитационное моделирование: учебник и практикум для академического бакалавриата / А. С. Акопов М.: Издательство Юрайт, 2017. 389 с.

#### 7.2 Дополнительная литература

- 1. Пряжинская, В. Г. Математическое моделирование в водном хозяйстве / В. Г. Пряжинская, Г. Х. О. Исмайылов . М. : Наука, 1985 . 113 с. (1 шт)
- 2. Планирование и Управление водохозяйственными системами в условиях многоцелевого водопользования: монография/ И. ван Бик, Лаукс П; под ред. М.В. Селиверстовой; Федеральное агенство водных ресурсов; перевод с англ. А.В. Степанов и др. М.: Юстицинформ, 2009. с.660 (2шт)
- 3. Данилов-Данильян, В.И. Управление водными ресурсами. Согласование стратегий водопользования. / В.И. Данилов-Данильян, И.Л. Хранович. М.: Научный мир, 2010. 232 с. (11 шт)
- 4. Пряжинская, В. Г. Компьюторное моделирование в управлении водными

- ресурсами / Пряжинская Валентина Гавриловна . М. : Физматлит, 2002 . 496 с.(1 шт)
- 5. Математическое моделирование : Процессы в сложных экономических и экологических системах / А.А. Самарский, Н.Н. Моисеев, А.А. Петров . М. : Наука, 1986 . 296 с. (1 шт)
- 6. Научно-практический журнал «Природообустройство», 2008-2021 г.
- 7. Моделирование процессов функционирования водохозяйственных систем / Великанов А.Л. . М. : Наука, 1983 . 105 с. (1 шт.)

#### 7.3 Нормативные и правовые акты

- 1. Водный Кодекс Российской Федерации: утвержден ГД РФ от 03.06.2006 N 74-Ф3, (с изменениями на 3 августа 2018 года, редакция, действующая с 1 января 2019 года)
- 2. Федеральный закон "Об Охране окружающей среды" утвержден ГД РФ от 10 января 2002 г. N 7-Ф3
- 3. Водная стратегия российской федерации на период до 2020 года: распоряжение Правительства Российской Федерации от 27 августа 2009 г. № 1235-р
- 4. ГН 2.1.5.1315-03 Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования

## 7.4 Методические указания, рекомендации и другие материалы к занятиям

1. Галямина И.Г. Управление водохозяйственными системами: уч. пособие / И.Г.Галямина, Т.И. Матвеева, В.Н. Маркин[и др.]. – 2-е изд., перераб. и доп.. – Москва: ООО "Мегаполис", 2020. – 127 с. – ISBN 9785604486160.

## 8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Для освоения дисциплины необходимы следующие ресурсы информационнотелекоммуникационной сети «Интернет»:

- 1. Электронная библиотечная система <a href="https://www.library.timacad.ru">https://www.library.timacad.ru</a>
- 2. Научная электронная библиотека открытого доступа (OpenAccess) <a href="https://cyberleninka.ru">https://cyberleninka.ru</a>
  - 3. Научно-популярная энциклопедия, открытый доступ <a href="http://water-rf.ru/">http://water-rf.ru/</a>
  - 4. <a href="https://ru.wikipedia.org/wiki/">https://ru.wikipedia.org/wiki/</a> Справочно-поисковая система Википедия
- 5. Шабанов В.В. Словарь по прикладной экологии, рациональному природопользованию и природообустройству. http://www.twirpx.com/file/585902/
- 6. Российская государственная библиотека [Электронный ресурс]: содержит электронные версии книг, учебников, монографий, сборников научных трудов как отечественных, так и зарубежных авторов, периодических изданий. Режим доступа: http://www.rbc.ru

## 9. Перечень программного обеспечения и информационных справочных систем (при необходимости)

- а. <u>www.consultant.ru</u>Справочная правовая система «КонсультантПлюс».
- b. Справочная правовая система «Гарант» <a href="http://www.garant.ru/">http://www.garant.ru/</a>

## 10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 10

Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

Наименование специальных помещений и помещений для самостоятель-Оснащенность специальных помещений и ной работы (№ учебного корпуса, № помещений для самостоятельной работы аудитории) Учебная лаборатория «Гидросиловых Для реализации учебной программы используустановок». ются: Учебная аудитории для проведения - демонстрационные модели занятий лекционного и практического - плакаты, стенды, макеты сооружений; типа, выполнения курсовых работ, - гидравлические лотки, турбины. групповых и индивидуальных 1. Парта моноблок двухместная 16 шт. консультаций, текущего контроля и 2. Доска меловая 2 шт. промежуточной аттестации. 3. Плакаты. (без инв.№) 4. Модели сооружений 4 шт. (без инв.№) 5. Зеркальный лоток №1 -1шт. (инв. № 28 корпус 8 аудитория 410134000001283) 6. Насос КМ-150-125-250 (инв.№ 210134000000024) 7. Лоток гидравлический б/у (ост) (инв.№ 410136000004901) Для реализации учебной программы использу-Учебная аудитории для проведения занятий лекционного и практического ются: типа, выполнения курсовых работ, - плакаты, стенды групповых и индивидуальных 1. Парта моноблок двухместная 7шт. консультаций, текущего контроля и 2. Парта двухместная 7 шт промежуточной аттестации. 3. Стул 14 шт 4. Доска меловая 1 шт. 28 корпус 6 аудитория 5. Плакат 36 шт. (без инв.№) 6. Учебный макет 1 шт. (без инв.№) Библиотека, читальный зал Парты и стулья в достаточном количестве 29 корпус Комнаты для самоподготовки в общежи-Парты и стулья в достаточном количестве тиях Академии (для студентов проживающих в общежитии)

#### 11. Методические рекомендации студентам по освоению дисциплины

1) Для качественного освоения дисциплины и получения профессиональных навыков рекомендуется регулярное посещение лекционных и практических

- занятий. Целесообразно закрепление материала после каждого вида занятий, просматривая конспект, литературные источники, новости в сети интернет.
- 2) Современный специалист должен обладать необходимой эрудицией, как профессиональной, так и общекультурного характера. Стоит, помимо основной учебной литературы, знакомиться с журнальными публикациями, появляющимися монографиями. Это позволит успешно составлять (или участвовать в составлении) техническую документацию, в том числе и работать над курсовыми работами, участвовать в дискуссиях на профессиональные темы и научно-практических конференциях, отстаивать варианты решений.
- 3) Многие задачи, рассматриваемые при изучении дисциплины требуют значительного объема вычислений. Всегда старайтесь максимально использовать вычислительные возможности компьютерных программ (Excel, Mathcad, другие модели). В этом случае ошибка, допущенная в начале работы, не введет вас в глубокую депрессию на финише.
- 4) Не следует стремиться достичь высокой точностью результата. 10 знаков после запятой свидетельствуют лишь о слабой подготовленности. Точность расчетов определяется точностью исходной информации и нормативных требований.
- 5)Самостоятельная работа не должна превращаться в повседневную рутину. Эффективный способ бороться с этим творческое отношение к предмету. Практически, в любой теме можно найти интересные методические особенности, нерешенные вопросы, предмет для научной работы. Научная дисциплина образовательного цикла находится на стыке многих наук и использует их достижения. Широк круг проблем и достаточно обширна сфера научных исследований, каждый студент может найти себе что-то интересное для себя.

#### Виды и формы отработки пропущенных занятий

Пропущенные занятия студент отрабатывает до начала зачетной сессии.

Формой отработки пропущенных занятий может быть представление преподавателю рукописного конспекта лекции или соответствующего раздела выполняемой расчетной работы, а также реферата или презентации по теме пропущенного занятия и собеседование по данной теме. Контроль теоретических знаний по пропущенной теме занятия может быть проведен в устной или письменной форме.

## 12. Методические рекомендации преподавателям по организации обучения по дисциплине

#### МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛЕКЦИЯМ

Лекционный материал должен содержать постановку задачи рассматриваемых проблем, примерную технологию их решения. Необходимым условием является соответствие материала лекции учебному плану и позициям рабочей программы, а также рекомендованным литературным источникам,

перечню вопросов для тестирования и экзаменационным вопросам. В процессе обучения следует вводить результаты новых исследований, при этом: студенты обеспечиваются доступом к источнику; подготавливается иллюстрационный материал; определяется место новшества в изучаемом курсе; изыскивается возможность использования нововведения в практических работах.

**Цель лекционного курса:** развить у студентов основные знания по принятию управленческих решений, обосновать их, делать постановку оптимизационных задач и знать методы их решения.

**Используемые методы обучения:** лекция должна включать конспективную часть (цели, задачи, определения, ссылки на источники, используемые методы), необходимую для понимания и усвоения дальнейших знаний в процессе практических и самостоятельных занятий. Рассматриваемые вопросы стоит показывать с использованием конкретных примеров, обозначая их водохозяйственные и экологические проблемы и, по возможности, делая обобщения для других вероятных ситуаций.

**Используемые средства обучения** включают печатные и электронные ресурсы, которые дополняются раздаточным материалом: плакаты с классификационными схемами.

#### Перечень раздаточного материала, используемого на занятии

- Классификационная таблица моделей, используемых в процессе гидролого-водохозяйственного обоснования проектных схем
- Блок-схемы моделей разного типа
- Примеры моделирующих алгоритмов
- Источники получения информации и их классификация
- Формы водохозяйственных балансов и их моделирование в процессе обоснования водохозяйственных и водоохранных мероприятий
- Схемы сооружений, обеспечивающих моделируемые схемы
- Эскизы характерных зависимостей и последовательность их реализации

Ознакомление с документом — Стратегия развития водохозяйственного комплекса Российской Федерации до 2020 года. Рассмотрение вопросов наличия и использования водных ресурсов в странах Мира (выполняется по вариантам и обсуждается на занятиях после доклада студента).

#### МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ

*Используемые методы обучения:* Излагается тематика практических занятий, формулируется постановка решаемой задачи в соответствии с

календарным планом. Методика решения задачи доводится до студентов сначала в целом, а затем поэтапно детализируется. Обязательным условием является учет степени и уровня подготовки студентов. Поэтому целесообразно сначала тестировать группу на выяснение уровня инженерной подготовки и расчетных возможностей в части применения компьютерных технологий. При необходимости следует провести дополнительное обучение.

Задания студентам для самостоятельной работы ориентированы на выполнение расчетных заданий. Предусматривается решение некоторых практических задач по курсу, затронутых или сформулированных в лекционном курсе.

(подпись

(подпись)

Программу разработали:

Раткович Л.Д., д.т.н., профессор

Матвеева Т.И., к.т.н.

#### **РЕЦЕНЗИЯ**

#### на рабочую программу дисциплины

### Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем

ОПОП ВО по направлению 20.04.02Природообустройство и водопользование, направленность Насосы, насосные станции, водоснабжение, водоотведение и управление водными ресурсами

#### (квалификация выпускника – магистр)

Исмайыловым Г.Х., д.т.н., профессором кафедры гидрологии, гидрогеологии и регулирования стока Института мелиорации, водного хозяйства и строительства, к.т.н. (далее по тексту рецензент), проведена рецензия рабочей программы дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» ОПОП ВО по направлению 20.04.02 Природообустройство и водопользование, направленность «Насосы, насосные станции, водоснабжение, водоотведение и управление водными ресурсами (квалификация выпускника — магистр) разработанной в ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», на кафедре комплексного использования водных ресурсов и гидравлики (разработчики —, Раткович Л.Д., профессор, д.т.н., Матвеева Т.И., доцент, к.т.н.).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

- 1. Предъявленная рабочая программа дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» (далее по тексту Программа) <u>соответствует</u> требованиям ФГОС по направлению 20.04.02 Природообустройство и водопользование. Программа <u>содержит</u> все основные разделы, <u>соответствует</u> требованиям к нормативно-методическим документам.
- 2. Представленная в Программе *актуальность* учебной дисциплины в рамках реализации ОПОП ВО *не подлежит сомнению* дисциплина относится к вариативной части учебного цикла Б1.В
- 3. Представленные в Программе *цели* дисциплины *соответствуют* требованиям ФГОС направления 20.04.02 Природообустройство и водопользование.
- 4. В соответствии с Программой за дисциплиной «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» закреплено 4 компетенции. Дисциплина «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» и представленная Программа способна реализовать их в объявленных требованиях. Результаты обучения, представленные в Программе в категориях знать, уметь, владеть соответствуют специфике и содержанию дисциплины и демонстрируют возможность получения заявленных результатов.
- 5. Общая трудоёмкость дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» составляет 4 зачётных единицы (144 часа / из них практическая подготовка 4 часов).
- 6. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин <u>соответствует</u> действительности. Дисциплина «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» взаимосвязана с другими дисциплинами ОПОП ВО и Учебного плана по направлению 20.04.02 Природообустройство и водопользование и возможность дублирования в содержании отсутствует.
- 7. Представленная Программа предполагает использование современных образовательных технологий, используемые при реализации различных видов учебной работы. Формы образовательных технологий <u>coomветствуют</u> специфике дисциплины.

8. Программа дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» предполагает 5 занятий в интерактивной форме.

9. Виды, содержание и трудоёмкость самостоятельной работы студентов, представленные в Программе, <u>соответствуют</u> требованиям к подготовке выпускников, содержащимся во ФГОС ВО направления 20.04.02 Природообустройство и водопользование.

10. Представленные и описанные в Программе формы *текущей* оценки знаний (опрос, как в форме обсуждения отдельных вопросов, так и выступления и участие в дискуссиях, работа над РГР), <u>соответствуют</u> специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний студентов, предусмотренная Программой, осуществляется в форме зачета с оценкой, что <u>соомветствует</u> статусу дисциплины, как дисциплины вариативной части учебного цикла — Б1.В ФГОС направления 20.04.02 Природообустройство и водопользование.

11. Формы оценки знаний, представленные в Программе, <u>соответствуют</u>специфике дисциплины и требованиям к выпускникам.

12. Учебно-методическое обеспечение дисциплины представлено: основной литературой — 5 источников (базовый учебник), дополнительной литературой — 8 наименований, периодическими изданиями — 6 источников со ссылкой на электронные ресурсы, Интернет-ресурсы — 8 источника и <u>соответствует</u> требованиям ФГОС направления 20.04.02 Природообустройство и водопользование.

13. Материально-техническое обеспечение дисциплины соответствует специфике дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.

14. Методические рекомендации студентам и методические рекомендации преподавателям по организации обучения по дисциплине дают представление о специфике обучения по дисциплине «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем».

#### ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины «Статистическое и имитационное моделирование при обосновании режима и параметров водохозяйственных систем» ОПОП ВО по направлению 20.04.02 Природообустройство и водопользование, направленность Насосы, насосные станции, водоснабжение, водоотведение и управление водными ресурсами (квалификация выпускника – магистр), разработанной Ратковичем Л.Д., профессором, д.т.н., Матвеевой Т.И., к.т.н., доцентом соответствует требованиям ФГОС ВО, современным требованиям экономики, рынка труда и позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Рецензент: Исмайылов Г.Х., профессор кафедры гидрологии, гидрогеологии и регулирования стока Института мелиорации, водноро хозяйства и строительства, д.т.н.