Документ подписан простой электронной подписью

Информация о владельце:

Уникальный программный к

966df42f20792aca

ФИО: Апатенко Алексей Сергеевич

Ститута Менания и энергетия имени в п. Горячкина огразовательное учреждение высшего огразования 5.33.36 федеральное государственное воджение огразовательное учреждение высшего огразования Должность: И.о. дире Дата подписания:

:33:36 «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ –

МСХА имени К.А. ТИМИРЯЗЕВА» d66d010981da

(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Институт механики и энергетики имени В.П. Горячкина Кафедра материаловедения и технологии машиностроения

> ТВЕРЖДАЮ: И.о. директора института механики и энергетики имени В.П. Горячкина А.С. Апатенко 2023г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.14ХИМИЯ

для подготовки бакалавров

ФГОСВО

Направление:23.03.01 Технология транспортных процессов

Направленность: Цифровые транспортно-логистические системы автомобильного транспорта

Kypc 1 Семестр 1

Форма обучения: очная

Год начала подготовки: 2023

When
Разработчик: Коноплев В.Е., к.х.н., доцент
« <u>28</u> » <u>08</u> 2023г.
Рецензент: Павлов А.Е., д.фм.н., доцент
« <u>∑</u> 8» <u>08</u> 2023г.
Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 23.03.01 - Технология транспортных процессов и учебного плана.
Программа обсуждена на заседании кафедры «Материаловедения и технологии машиностроения» протокол № 1 от «28» <u>08</u> 2023г.
Зав. кафедрой Гайдар С.М., д.т.н., профессор
Согласовано: / Председатель учебно-методической комиссии института механики и энергетики имени В.П. Горячкина
протокол № <u>2</u> от <u>М</u> <u>05</u> 2023 г. « <u>М</u> » <u>05</u> 2023 г.
Заведующий выпускающей кафедрой тракторов и автомобилей Дидманидзе О.Н., академик РАН, д.т.н., профессор
« <u>/8</u> » <u>09</u> 2023 г.
Зав.отделом комплектования ЦНБ

Содержание

АННОТАЦИЯ	4
1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	4
2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ	4
3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕ ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	ССЕННЫХ (5
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	7
4.1 РАСПРЕДЕЛЕНИЕ ТРУДОЁМКОСТИ ДИСЦИПЛИНЫ ПО ВИДАМ РАБОТВ СЕМЕСТРЕ	7
5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	12
6. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТ ОСВОЕНИЯ ДИСЦИПЛИНЫ	ΓΟΓΑΜ 12
6.1. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, У НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ	12
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ .	19
7.1 ОСНОВНАЯ ЛИТЕРАТУРА	19 19
8.ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИГ НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
9.ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫ	
10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕО ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	20
Виды и формы отработки пропущенных занятий	21
12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧІ	ЕНИЯ ПО

Аннотация

рабочей программы учебной дисциплины Б1.О.14«Химия» для подготовки бакалавра по направлению 23.03.01 Технология транспортных процессов, направленность «Цифровые транспортно-логистические системы автомобильного транспорта»

Цель освоения дисциплины:в соответствии с компетенциями по дисциплине формирование базовых знаний о фундаментальных законах, закономерностях и основных методах физико-химической науки, что позволит студентам систематизировать знания важнейших теоретических обобщений химии; глубже понять явления природы, механизмы химических и физико-химических процессов, протекающих в природе и живых организмах, принципы химической технологии и пути модификации существующих технологий с учетом требований охраны окружающей среды.

Место дисциплины в учебном плане:блок Б1, обязательная часть, дисциплина осваивается в 1 семестре.

Требования к результатам освоения дисциплины: в результате освоения дисциплины формируются следующие компетенции (индикаторы достижения компетенции): ОПК-1 (ОПК-1.1 и ОПК-1.2).

Краткое содержание дисциплины: строение атома и вещества, основные законы химии, основы химической термодинамики и кинетики, растворы: способы выражения состава растворов и их коллигативные свойства, равновесия в растворах электролитов и неэлектролитов, окислительно-восстановительные процессы, электрохимические процессы.

Общая трудоемкость дисциплины: Ззач. ед. (108 часа).

Промежуточный контроль: экзамен.

1. Цель освоения дисциплины

Целью освоения дисциплины в соответствии с компетенциями по дисциплине является формирование базовых знаний о фундаментальных законах, закономерностях и основных методах физико-химической науки, что позволит студентам систематизировать знания важнейших теоретических обобщений химии; глубже понять явления природы, механизмы химических и физико-химических процессов, протекающих в природе и живых организмах, принципы химической технологии и пути модификации существующих технологий с учетом требований охраны окружающей среды.

2. Место дисциплины в учебном процессе

Дисциплина «Химия» включена в обязательный перечень ФГОС ВО, в цикл дисциплин обязательной части. Дисциплина «Химия» реализуется в соответствии с требованиями ФГОС,ОПОП ВО и Учебного плана по направлению 23.03.01 Технология транспортных процессов.

Курс «Химия» является основополагающим для изучения следующих дисциплин: ««Экология», «Материаловедение», «Эксплуатационные материалы и экономия топливно-энергетических ресурсов», «БЖД».

Особенностью дисциплины является ее направленность на реализацию студентами полученных знаний в практической деятельности, формировании современного мировоззрения о процессах, постоянно и периодически происходящих в объектах техносферы, на основе современных знаний и законов химии, понима-

нии возможностей и механизмов влияния (управления) на процессы (реакции), протекающие в окружающей среде.

Рабочая программа дисциплины «Химия» для инвалидов и лиц с ограниченными возможностями здоровья разрабатываются индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций, представленных в таблице 1.

Таблица 1

Требования к результатам освоения учебной дисциплины

$N_{\underline{0}}$	Код	Солорукациа		В результате изучен	ия учебной дисциплины обуча	ющиеся должны:
п/ п	код компе-	Содержание компетенции (или её части)	Индикаторы ком- петенций	знать	уметь	владеть
1.	ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	стрирует знание основных законов математических и естественных наук, необходимых для решения типовых задач профессиональной деятельности ОПК-1.2. Использует знания основных законов математических и естественных наук для решения стандартных задач для обеспечения реализации техноло-	-закономерности протекания химических реакция при эксплуатации транспортных систем; -основные классы веществ и материалов, применяемые при эксплуатации транспортных систем; -основные компьтерные программы химического моделирования - химические основы рационального использования природных ресурсов и защиты окружающей среды; -наиболее важные специализированные поисковые системы по различным разделам	ления, происходящие в природе, быту и на производстве; -определять возможность протекания химических превращений в различных условиях и оценки их последствий при помощи специализированных компьютерных программ -оценивать влияние химических факторов на организм человека и другие системы; -критически оценивать достоверность химической информации, поступающей из разных источников; -выбирать необходимую программу химического компьютерного моделирования, соответствующую	тематических, физических и химических моделей при решении производственных задач; планированием, постановкой и обработкой данных химического эксперимента при помощи специализированных компьютерных программ -навыками химического анализа и на основе его принимать решения по рациональному использования природных ресурсов и защиты окружающей среды; -навыками использования
					поставленной задаче	ния

4. Структура и содержание дисциплины

4.1 Распределение трудоёмкости дисциплины по видам работв семестре

Общая трудоёмкость дисциплины составляет 3 зач. ед. (108 часов), их распределение по видам работ в 1семестре представлено в таблице 2.

Таблица 2 Распределение трудоёмкости дисциплины по видам работв семестре

Вид учебной работы		Грудоёмкость
		семестр
	час.	№ 1
Общая трудоёмкость дисциплины по учебному	108	108
плану	100	100
1. Контактная работа:	34,4	34,4
Аудиторная работа	34,4	34,4
в том числе:		
лекции (Л)	16	16
лабораторные работы (ЛР)	16	16
консультации перед экзаменом	2	2
контактная работа на промежуточном контро- ле (KPA)	0,4	0,4
2. Самостоятельная работа (СРС)	73,6	73,6
самостоятельное изучение разделов, самоподго-товка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным работам и т.д.)	39	39
Контрольная работа (подготовка)	10	10
Подготовка к экзамену (контроль)	24,6	24,6
Вид промежуточного контроля:		Экзамен

4.2 Содержание дисциплины

Таблица 3 **Тематический план учебной дисциплины**

Наименование разделов и	Всего	Аудитој	оная ра	бота	Внеаудиторна
тем дисциплин	beero	Л	ЛР	ПКР	я работа СР
Раздел 1.«Основные					
понятия и законы химии,	11	2	2		7
химические свойства	11	<u> </u>	2		,
неорганических веществ»					
Раздел 2. «Строение атома и					
молекул. Периодический	11	2	2		7
закон Д.И.Менделеева»					
Раздел 3. «Основы					
химической	11	2	2		7
термодинамики»					
Раздел 4. «Химическая	11	2.	2		7
кинетика и равновесие в	11	<u> </u>			/

Наименование разделов и	Васта	Всего Аудиторная работа		Внеаудиторна	
тем дисциплин	Bcero	Л	ЛР	ПКР	я работа СР
гомогенных и гетерогенных					
системах»					
Раздел 5.«Дисперсные	11	2	2		7
системы. Растворы»	11	<u> </u>	2		7
Раздел 6.«Водные растворы	11	2	2		7
электролитов»	11	<u> </u>	2		1
Раздел 7. «Окислительно-					
восстановительные и	15	4	4		7
электрохимические	13	4	4		,
процессы»					
консультации перед экза-	2			2	
меном	2				
контактная работа на					
промежуточном контроле	0,4			0,4	
(KPA)					
Подготовка к экзамену	24,6				24,6
(контроль)	24,0				27,0
Всего за 1 семестр	108	16	16	2,4	73,6
Итого по дисциплине	108	16	16	2,4	73,6

Раздел 1. «Основные понятия и законы химии, химические свойстванеорганических веществ» Предмет химии. Основные понятия химии. Атомно-молекулярное учение. Основные стехиометрические законы химии. Классификация и свойства неорганических соединений: Оксиды. Кислоты. Основания. Соли средние, кислые, основные, двойные и комплексные.

Раздел 2. «Строение атома и молекул. Периодический закон Д.И.Менделеева» Теория строения атома. Современная модель состояния электрона в атоме. Электронные оболочки атомов. Квантовые числа. Порядок заполнения электронных уровней. Принцип Паули. Правило Гунда. Правило Клечковского. Типы орбиталей. Свойства свободных атомов. Периодический закон Д. И. Менделеева в свете современной теории строения атомов. Типы химических связей. Тип связи и свойства веществ. Строение молекул. Межмолекулярное взаимодействие.

Раздел 3. «Основы химической термодинамики» Первый закон термодинамики. Термохимия. Закон Гесса. Энтропия. Второй закон термодинамики. Третий закон термодинамики. Направленность химических реакций. Энергия Гиббса. Расчет термодинамических характеристик.

Раздел 4. «Химическая кинетика и равновесие в гомогенных и гетерогенных системах» Скорость реакций. Закон действия масс. Зависимость скорости реакции от температуры (правило Вант-Гоффа, уравнение Аррениуса). Катализаторы. Цепные реакции. Химическое равновесие. Принцип Ле Шателье.

Раздел 5. «Дисперсные системы. Растворы» Дисперсные системы, их классификация по степени дисперсности и агрегатному состоянию. Свойства коллоидных растворов. Общие понятия о растворах. Способы выражения количественного состава растворов. Коллигативныесвойства разбавленных растворов. Осмос. Закон Вант-Гоффа. Законы Рауля.

Раздел 6. «Водные растворы электролитов» Теория электролитической диссоциации. Степень диссоциации, сильные и слабые электролиты. Водородный показатель. Методы определения рН растворов. Гидролиз солей.

Раздел 7. «Окислительно-восстановительные и электрохимические процессы» Теория окислительно-восстановительных реакций. Методы составления уравнений ОВР. Влияние среды на характер реакции. Направление протекания ОВР. ЭДС процессов.Электродный потенциал.Гальванические элементы. Электролиз. Коррозия металлов. Защита от коррозии.

4.3 Лекции/лабораторныеработы

Таблица 4 Содержание лекций/лабораторных работи контрольные мероприятия

№ п/ п	№ раздела	№ и название лекций/ лабораторныхрабо	Формируемы е компетенции (индикатор	Вид контрольног о	Кол- во ча-
11		T	достижения компетенции)	мероприятия	сов
1.	' '	зные понятия и за- мические свойства веществ»			4
	Тема 1. (Основные понятия и законы химии)	Лекция № 1 (Основные понятия и законы химии) пре- зентация в PowerPoint	ОПК-1.1; ОПК-1.2		2
	Тема 2 (Химические свойства неорганических веществ)	Лабораторная работа № 1 (Определение мо-лярной массы эквивалента.) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка от- чета	2
2.	Раздел 2. «Строе кул. Периодичес Менделеева»	ение атома и моле- ский закон Д.И.			4
	Тема 1. (Строение ато- ма и молекул. Периодический закон Д.И. Менделеева)	Лекция №2 (Периодический за- кон Д.И.Менделеева и строение атома) презентация в PowerPoint	ОПК-1.1; ОПК-1.2		2
	Менделесва	Лабораторная работа № 2 (Периодический закон Д.И.Менделеева и строение атома) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	контрольные задания	2
3.	модинамики»	вы химической тер-			4
	Тема 1. (Основы хими- ческой термо-	Лекция №3 (Основы химиче- ской термодинами-	ОПК-1.1; ОПК-1.2		2

№ п/ п	№ раздела	№ и название лекций/ лабораторныхрабо т	Формируемы е компетенции (индикатор достижения компетенции)	Вид контрольног о мероприятия	Кол- во ча- сов
	динамики)	ки) презентация в PowerPoint			
		Лабораторная работа № 3 (Определение теплоты (энтальпии) нейтрализации) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка от- чета	2
4.		ческая кинетика и могенных и гетеро- «»			4
	Тема 1. (Химическая кинетика и рав- новесие в гомо- генных и гете- рогенных си-	Лекция №4 (Химическая кинетика и равновесие в гомогенных и гетерогенных системах) презентация в PowerPoint	ОПК-1.1; ОПК-1.2		2
	стемах)	Лабораторная работа № 4 (Кинетика химических процессов. Химическое равновесие. Катализ) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка отчета, контрольные задания	2
5.	Раздел 5. «Диспо Растворы»	ерсные системы.			4
	Тема 1. (Дисперсные системы. Рас- творы)	Лекция №5 (Дис- персные системы. Растворы. Общие свойства растворов) презентация в PowerPoint	ОПК-1.1; ОПК-1.2		2
		Лабораторная работа № 5 (Приготовление растворов заданной концентрации) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка от- чета	2
6.	Раздел 6. «Водни тролитов»	ые растворы элек-			4
	Тема 1. (Водные рас-	Лекция №6 (Водные растворы электроли-	ОПК-1.1; ОПК-1.2		2

№ п/ п	№ раздела	№ и название лекций/ лабораторныхрабо т	Формируемы е компетенции (индикатор достижения компетенции)	Вид контрольног о мероприятия	Кол- во ча- сов
	творы электро- литов)	тов) презентация в PowerPoint			
	зитов)	Лабораторная работа № 6 (Гидролиз со- лей. Определение рН различных рас- творов) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка отчета, контрольные задания	2
7.	Раздел 7. «Окисл	пительно-			10
	восстановителы	ные и электрохими-			
	ческие процессь	I»			
	Тема 1.	Лекция №7 (Основы	ОПК-1.1;		2
	(Основы элек-трохимии)	электрохимии) презентация в PowerPoint	ОПК-1.2		
		Лабораторная работа № 7 (Окислительновосстановительные реакции) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка от- чета	2
	Тема 2. (Коррозия металлов)	Лекция №8 (Коррозия металлов) презентация в PowerPoint	ОПК-1.1; ОПК-1.2		2
		Лабораторная работа № 8 (Коррозия металлов) программы ChemDraw, ChemSketch	ОПК-1.1; ОПК-1.2	проверка от- чета, кон- трольные за- дания	2

Таблица 5

Перечень вопросов для самостоятельного изучения дисциплины

	Trepe tend bompocod Ann	самостоятсявного изучения дисциплины
№	№ раздела и темы	Перечень рассматриваемых вопросов для
Π/Π	t i pusaciu ii ienibi	самостоятельного изучения
	Раздел 1	
1.	Тема 1. Основные понятия	Закон постоянства состава. Закон сохранения мас-
	и законы химии	сы. Атомно-молекулярное учение (ОПК-1.1; ОПК-
	Тема 2. Химические свой-	1.2)
	ства неорганических ве-	Соли средние, кислых, основные, двой-
	ществ	ные.Комплексные соединения (ОПК-1.1; ОПК-1.2)
	Раздел 2	
2.	Тема 1. Строение атома и	Периодический закон. Ионная связь. Металличе-
	молекул. Периодический	ская связь. Гибридизация атомных орбиталей.
	закон Д.И. Менделеева	Межмолекулярное взаимодействие. Кристалличе-
		ские решетки. (ОПК-1.1; ОПК-1.2)
	Раздел 3	

		_
№	Managara w Tarri	Перечень рассматриваемых вопросов для
Π/Π	№ раздела и темы	самостоятельного изучения
3.	Тема 1. Основы химической	Фазовые равновесия. Диаграмма состояния воды.
	термодинамики	(ОПК-1.1; ОПК-1.2)
	Раздел 4	
4.	Тема 1. Химическая кине-	Цепные реакции. Фотохимические реакции
	тика и равновесие в гомо-	(ОПК-1.1; ОПК-1.2)
	генных и гетерогенных си-	
	стемах	
	Раздел 5	
5.	Тема 1. Дисперсные систе-	Классификация дисперсных систем, промышлен-
	мы. Растворы	ные способы улавливания пылей, дымов, тума-
		нов.(ОПК-1.1; ОПК-1.2)
	Раздел 6	
6	Тема 1.	Методы определения рН, произведение раствори-
	Водные растворы электро-	мости, кислотно-основные индикаторы(ОПК-1.1;
	литов	ОПК-1.2)
	Раздел 7	
8	Тема 1. Основы электрохи-	Сплавы: типы, свойства, применение. Гальваниче-
	мии	ские элементы. Аккумуляторы. Защита от корро-
	Тема 2. Коррозия металлов	зии. Применение электролиза
		(ОПК-1.1; ОПК-1.2)

5. Образовательные технологии

Таблица 6

Применение активных и интерактивных образовательных технологий

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий
1.	Приготовление растворов	ЛР	Технология контекстного обучения
	заданной концентрации		
2	Кинетика химических про-	ЛР	Технология проблемного обучения
	цессов. Химическое равно-		
	весие.		

6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности

Контрольные задания:

Раздел 1 и 2«Основные понятия и законы химии, химические свойства неорганических веществ» и«Строение атома и молекул. Периодический закон Д.И. Менделеева»

Вариант билета1.

- 1) Выберите кислотные оксиды. Обоснуйте свой ответ. SeO_2 , CuO, N_2O , ZnO, V_2O_5 , Cs_2O .
- 2) С какими из перечисленных веществ H_2O , HCl, CaO, NaOH, H_2SO_4 , SO_3 , KOH, CO_2 , Na_2O будет реагировать $Ca(OH)_2$? Напишите уравнения всех идущих реакций и назовите полученные соединения.
- 3) Допишите реакции ионного обмена в молекулярном и ионном виде. Напишите сокращенные ионные уравнения.

- 1) $Ba(NO_3)_2 + NaOH =$ 2) $Ba(NO_3)_2 + Na_2SO_4 =$
 - 3) $Ba(NO_3)_2 + CaCl_2 =$
- 4) $Ba(NO_3)_2 + Na_3PO_4 =$
- 4) При взаимодействии 22 г металла с кислотой выделилось 8.4 л водорода (н.у.). Рассчитайте эквивалент металла.
- 5) Напишите электронную и электронно-графическую формулу атома кальция в возбужденном состоянии. Какова валентность атома в этом состоянии?
- 6) Определите тип химической связи в соединениях: HBr, CuI, KBr
- 7) Расположите элементы в порядке увеличения их атомных радиусов: Al, Ga, S, O

Раздел 5 и 6. «Дисперсные системы. Растворы» и «Водные растворы электролитов» Вариант билета1.

- 1) Определить рН 0,2 моль/л раствора NaOH.
- 2) Напишите уравнение гидролиза в ионном и молекулярном виде ацетата кальция.
- 3) Смешаны 150 мл 0,5 моль/л раствора КОН и 0,4 л 0,1 моль/л раствора КОН. Определить молярную концентрацию полученного раствора.
- 4) При какой температуре замерзает антифриз, полученный смешением этиленгликоля $C_2H_4(OH)_2$ (ρ =1,116 г/см³) и воды в равных объемах?
- 5) До какого объёма надо разбавить 300 мл 20%-ного раствора (ρ =1,152 г/мл), чтобы получить 4%-ный раствор (ρ =1,029 г/мл)?

Раздел 7.«Окислительно-восстановительные и электрохимические процессы» Вариант билета1.

Билет №1.

1) Определите степени окисления элементов в частицах. Напишите электронно-ионное уравнение. Какой это процесс? Определите, окислителем или восстановителем является исходная частица:

 $HNO_2 \rightarrow NO$

 $CrO_4^{2-} \rightarrow CrO_2^{-}$

2) Расставьте коэффициенты в уравнении реакции методом электронного или электронноионного баланса. Укажите окислитель и восстановитель, процесс окисления и восстановления. Рассчитайте молярную массу эквивалента окислителя.

 $K_2SO_3 + KMnO_4 + H_2O = K_2SO_4 + MnO_2 + KOH$

- 3) Пользуясь таблицей электродных потенциалов, подберите анодное и катодное покрытие для серебра. Напишите катодные и анодные процессы коррозии в кислой среде.
- 4) Напишите уравнения электродных процессов при электролизе водного раствора NaNO₃ с инертным анодом. Рассчитайте массу вещества, выделившегося на катоде при силе тока 8 А за 1 час.

Контрольная работа

Выполняется во внеаудиторное время по вариантам.

- 1) Рассчитайте объём газа, который образуется при растворении 30 г карбоната кальция в избытке раствора соляной кислоты.
- 2) На сгорание массы 12,4 г неизвестного элемента был израсходован объем 6,72 л кислорода. Рассчитайте эквивалент элемента и определите, какой элемент был взят в данной реакции.
- 3) Назовите вещества, класс соединений HCl; H₂SiO₃. Укажите типы химических связей между атомами в данных соединениях. Определите степень окисления элементов и составьте структурные формулы данных веществ, укажите направление поляризации связей в этих соединениях.
- 4) В объеме воды $V(H_2O)$ растворили массу вещества т. Плотность полученного раствора ρ . а) найдите массовую долю вещества в растворе, молярную и нормальную концентрации, титр полученного раствора; б) Какие объемы полученного раствора и воды нужно взять, чтобы приготовить объем V_1 (в мл) раствора данного вещества с концентрацией C_{M_1} ? в) Какой объем раствора вещества X с концентрацией C_{M_1} необходим для нейтрализации раствора полученного в пункте δ ?
- 5) Составьте уравнения диссоциации гидроксида натрия и азотистой кислоты. Рассчитайте рН водных растворов каждого вещества с указанной концентрацией (См = 0,004 M).

- 6) Для данной соли (хлорид цинка) напишите уравнения гидролиза по первой ступени в молекулярной форме, полной и краткой ионной форме, определите тип гидролиза, рассчитайте константу гидролиза, степень гидролиза и рН раствора этой соли.
- 7) Для обратимой реакции $Fe_2O_3(тв)+3CO(r)\leftrightarrow 2Fe(тв)+3CO_2(r)$ рассчитайте константу равновесия, если начальная концентрация CO равна 3 моль/л, к моменту наступления равновесия прореагировало 75% CO.
- 8) Для данной реакции рассчитайте изменение энтальпии ΔH_{298} , энтропии ΔS_{298} и энергии Гиббса ΔG_{298} . Рассчитайте температурную область самопроизвольного протекания реакции. Рассчитайте константу равновесия данной реакции при стандартных условиях (таблицы стандартных термодинамических потенциалов приводятся в различных справочниках) $SiO_2(TB) + 2CO(\Gamma) \rightarrow Si(TB) + 2CO_2(\Gamma)$
- 9) Напишите уравнения электродных процессов при электролизе водного раствора соли с графитовым анодом. Рассчитайте массы веществ, выделившихся на катоде и аноде при данной силе тока I за время t: $CuBr_2$, I=8A, t=2 час; NaBr, I=5A, t=1 час; KNO_3 , I=6A, t=3 часа.
- 10) Пользуясь таблицей стандартных электродных потенциалов, подберите анодное и катодное покрытие для металла (Fe). Напишите уравнения коррозии металла, протекающей а) на воздухе б) во влажном воздухе в) в кислой среде.

Перечень вопросов, выносимых на промежуточную аттестацию (экзамен):

- 1) Основные стехиометрические законы химии. Закон сохранения массы вещества. Закон взаимосвязи массы и энергии А. Эйнштейна. Закон Авогадро. Мольный объем газа
- 2) Понятие о химическом эквиваленте. Закон эквивалентов.
- 3) Ядерная модель атома. Строение электронной оболочки атома водорода по Бору. Двойственная корпускулярно-волновая природа электрона. Уравнение Де-Бройля. Атомная орбиталь.
- 4) Характеристика энергии электрона четырьмя квантовыми числами.
- 5) Принцип Паули. Правило Гунда. Правила Клечковского. Примеры.
- 6) Распределение электронов в атомах по уровням и подуровням.
- 7) Свойства свободных атомов.
- 8) Ковалентная связь.
- 9) Водородная связь и ее значение в свойствах воды.
- 10) Ионная связь. Механизм возникновения ионной связи. Свойства соединений, с ионной связью.
- 11) Вода в природе и её свойства. Жесткость воды и современные способы борьбы с ней.
- 12) Растворы. Способы выражения состава растворов.
- 13) Осмос и осмотическое давление растворов. Закон Вант-Гоффа.
- 14) Понижение давления пара растворителя над раствором. Понижение температуры замерзания и повышение температуры кипения разбавленных растворов.
- 15) Основные положения теорий электролитической диссоциации. Сильные и слабые электролиты. Примеры.
- 16) Применение закона действующих масс к растворам слабых электролитов. Константа электролитической диссоциации.
- 17) Ионное произведение воды. Водородный показатель рН.
- 18) Гидролиз солей. Ступенчатый гидролиз. Степень гидролиза и факторы, влияющие на нее.
- 19) Окислительно-восстановительные реакции. Степень окисления (примеры). Направление окислительно-восстановительных процессов.
- 20) Химическое равновесие. Константа химического равновесия (истинная, термодинамическая, концентрационная).
- 21) Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные. Понятие о фазе.
- 22) Первое начало термодинамики. Закон Гесса. Термохимические уравнения.
- 23) Второе начало термодинамики. Энтропия. Энергия Гиббса.

- 24) Скорость гомогенных химических реакций. Закон действующих масс для скорости реакции. Константа скорости реакции.
- 25) Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции.
- 26) Дисперсные системы и их классификация.
- 27) Строение мицеллы.
- 28) Уравнение Нернста. Электродные потенциалы.
- 29) Коррозия металлов.
- 30) Защита от коррозии.

Задания к экзамену

1. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$HNO_3 + H_2S \rightarrow NO + S + H_2O$$

2 Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$K_2SO_3 + KMnO_4 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + H_2O$$

3. Уравняйте методом электронно-ионного баланса и укажите, какие свойства проявляет MnO_2 в этой реакциии:

$$MnO_2 + FeSO_4 + H_2SO_4 \rightarrow MnSO_4 + Fe_2(SO_4)_3 + H_2O$$

4. Уравняйте методом электронно-ионного баланса и укажите, какие свойства проявляет MnO_2 в этой реакциии:

$$MnO_2 + KClO_3 + KOH \rightarrow K_2MnO_4 + KCl + H_2O$$

5. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$KMnO_4 + K_2SO_3 + H_2O \rightarrow MnO_2 + KOH + K_2SO_4$$

6. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$SO_2 + NaIO_3 + H_2O \rightarrow H_2SO_4 + NaI$$

7. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$KMnO_4 + K_2SO_3 + KOH \rightarrow K_2MnO_4 + K_2SO_4 + H_2O$$

8. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$KNO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow KNO_3 + Cr_2(SO_4) + K_2SO_4 + H_2O_4$$

9. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$Cu + HNO_{3(KOHII)} \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$$

10. Уравняйте приведенные ниже уравнения методом электронно-ионного баланса, укажите окислитель и восстановитель:

$$K_2Cr_2O_7 + H_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$$

- 11. Укажите, какие из приведенных ниже солей будут подвергаться гидролизу, напишите соответствующие уравнения реакций в молекулярной и ионной форме, укажите pH среды: BaCl₂, KNO₂, Al(NO₃)₃.
- 12. Будут ли подвергаться гидролизу соли K_3PO_4 , $CrCl_3$, $FeCO_3$, KNO_3 ? Ответ обоснуйте, написав соответствующие уравнения в моле-кулярной и ионной форме, и укажите pH среды.
- 13. Какие из перечисленных ниже солей, подвергаясь гидролизу, образуют основные соли: а) Cr₂(SO₄)₃, б) Na₂CO₃, в) FeCl₃? Напишите уравнения гидролиза в молекулярной и ионной форме.
- 14. Какие из солей подвергаются гидролизу: K_2CO_3 , LiCl, Ni(NO₃)₂, NH₄Cl? Составьте молекулярные и ионные уравнения гидролиза, укажите pH среды.
- 15. Какие из солей подвергаются гидролизу: Li_2S , $BaCl_2$, $Fe(NO_3)_2$? Составьте молекулярные и ионные уравнения их гидролиза.

- 16. Напишите математическое выражение для скорости реакции $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$ и определите, во сколько раз увеличится скорость реакции при увеличении концентрации оксида углерода(II) в четыре раза.
- 17. Какие из перечисленных солей: K_2S , $NaNO_3$, NH_4Cl подвергаются гидролизу? Напишите уравнения гидролиза в молекулярной и ионной форме и укажите pH среды.
- 18. Напишите уравнения гидролиза в молекулярной и ионной форме соли SnCl₂. Как подавить гидролиз этой соли?
- 19. Будут ли подвергаться гидролизу соли: K_2HPO_4 , $Cr(NO_3)_3$, KNO_3 . Напишите уравнения гидролиза в молекулярной и ионной форме.
- 20. Какие из солей подвергаются гидролизу: NaNO₂, MnCl₂, KNO₃? Для каждой из гидролизующихся солей напишите молекулярные и ионные уравнения гидролиза.
- 21. Применяя принцип Ле Шателье, укажите, в каком направлении произойдет смещение равновесия в системе $CO + H_2O \leftrightarrow CO_2 + H_2$, $\Delta H^0_{x.p.} = +2,85$ кДж если: а) увеличить концентрацию водорода б) понизить температуру в) увеличить давление.
- 22. Определите направление смещения равновесия в системе а) при повышении концентрации CO; б) при понижении температуры. Ответ мотивируйте. $H_2O_{(r)} + CO_{(r)} \implies H_{2(r)} + CO_{2(r)}$, $\Delta H^0 = -41~\text{кДж}$
- 23. Во сколько раз увеличится скорость реакции $2NO + O_2 \rightarrow 2NO_2$, если давление в системе увеличить вдвое?
- 24. Укажите, какое вещество будет накапливаться при повышении температуры в равновесной системе $C_{(T)} + CO_{2(\Gamma)} \rightleftharpoons 2CO_{(\Gamma)}$, $\Delta H > 0$.
- 25. Определите направление смещения равновесия при увеличении давления. $2ZnS_{(T)} + 3O_{2(\Gamma)}$ $\Rightarrow 2ZnO_{(T)} + 2SO_{2(\Gamma)}$
- 26. Определите, во сколько раз увеличится скорость реакции при увеличении концентрации кислорода в 4 раза $C_{(графит)} + O_2 \rightarrow CO_{2(\Gamma)}$.
- 27. Во сколько раз возрастет скорость реакции при повышении температуры с 20 до 40 0 C? Температурный коэффициент γ =3.92.
- 28. При увеличении температуры на $50~^{0}$ С скорость реакции возросла в 32 раза. Вычислите температурный коэффициент реакции.
- 29. Напишите выражения для констант равновесия реакции: $2SO_2 + O_2 \leftrightarrow 2SO_3$. В каком направлении произойдет смещение равновесия при понижении давления.
- 30. Напишите выражения для констант равновесия реакции:
- $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$. В каком направлении произойдет смещение равновесия при понижении давления.
- 31. При взаимодействии 22 г металла с кислотой выделилось 8.4 л водорода (н.у.). Рассчитайте эквивалент металла.
- 32. Сколько мл раствора хлорида калия (ω =20 %, ρ =1,13 г/см³) необходимо для приготовления 8 л 0,05 м раствора?
- 33. На восстановление 3,5 г оксида металла потребовалось 1,96 л водорода (н.у.). Рассчитайте молярную массу эквивалента металла.
- 34. Сколько мл раствора КСІ ($\omega = 20\%$, $\rho = 1,13$ г/см³) необходимо для приготовления 10 л 0,05н раствора?
- 35. Рассчитайте эквивалент неметалла, $28.5~\Gamma$ которого образуют с $H_230~\Gamma$ соединения. Назовите неметалл и его соединение с водородом.
- 36. Определите $C_{\rm M}$ и $C_{\rm H}H_2SO_4$, полученной при добавлении 4 л воды к 1 л 0,2н. H_2SO_4 .
- 37. На нейтрализацию 0,943 г фосфорной кислоты израсходовано 1,077 г гидроксида калия. Рассчитайте молярную массу эквивалента фосфорной кислоты.
- 38. В каком объёмном соотношении нужно смешать 2моль/л и 0,4н. растворы H_2SO_4 для получения 10 л 1моль/л раствора?
- 39. При разложении 1 г оксида металла образовалось 0,926 г металла. Рассчитайте эквивалент металла, назовите металл.
- 40. Какая масса гидроксида натрия потребуется для приготовления 400 мл раствора с ω =10%, ρ =1,1 г/см³? Найдите молярную и нормальную концентрацию полученного раствора.

- 41. Электролиз раствора сульфата меди (II) проводили 12 ч при силе тока 20 А. Выход по току составил 90%. Напишите уравнения электродных процессов и общей реакции, вычислите массу полученной меди.
- 42. Электролиз раствора сульфата цинка проводился в электролизёре с нерастворимым анодом в течение 6,7 ч. Выделилось 5,6 л кислорода, измеренного при н.у. Вычислите силу тока и массу выделившегося на катоде цинка, если выход по току составил 70 %.
- 43. Какие реакции протекают при электролизе с инертными электродами водного раствора сульфата натрия? Какая масса H_2SO_4 образуется около анода, если на аноде выделяется 11,2 л кислорода, измеренного при н.у.?
- 44. Какой металл выделился на катоде при электролизе в течение одного часа при силе тока 1 А, если в растворе была соль двухвалентного металла, а масса катода увеличилась на 2,219 г? 45. За 3 мин электролиза при силе тока 10 А на катоде выделилось 0,554 г металла, а на аноде 209 мл Cl₂ (н. у.). Какое соединение находилось в растворе?
- 46. Сколько г соды Na_2CO_3 надо ввести в бак с 50 л воды, чтобы снизить жесткость воды на 4 мг-экв/л?
- 47. Сколько соды (Na_2CO_3) потребуется для умягчения 120 л воды, если жёсткость её равна 8 мг-экв/л?
- 48. Какое время должен продолжаться электролиз раствора сульфата никеля (II) при силе тока 3 А, чтобы количество выделившегося на катоде металла составило один моль его эквивалента?
- 49. Сколько кулонов электричества прошло через электролизёр с раствором AgNO₃, если масса анода, изготовленного из серебра, уменьшилась на 2,3 г?
- 50. За 10 мин электролиза раствора платиновой соли током 5 А выделилось 1,517 г платины. Определите эквивалентную массу платины.
- 51. Вычислите общую, карбонатную и некарбонатную жесткость воды, если на титрование 100 мл воды израсходовано 4,9 мл 0,05н. трилона Б и2,6 мл 0,1 н. соляной кислоты.
- 52. Давление пара над раствором 10,5 г неэлектролита в 200 г ацетона равно 21854,40 Па. Давление пара чистого ацетона ($\mathrm{CH_3}$) $_2\mathrm{CO}$ при этой температуре равно 23939,35 Па. Определите молекулярную массу неэлектролита.
- 53. При какой температуре замерзает водный раствор этилового спирта, если массовая доля C_2H_5OH в нем равна 25 %? ($K_{\text{зам}} = 1.86$)
- 54. При какой температуре кипит водный раствор глюкозы, если массовая доля $C_6H_{12}O_6$ в нем равна 10 %? ($K_{\text{кип}} = 0.52$)
- 55. При растворении 1,6 г неэлектролита в 250 мл воды был получен раствор, который замерзает при температуре -0,2 °C. Определите молекулярную массу растворенного вещества. ($K_{\text{зам}} = 1.86$).
- 56. Раствор 9,2 г йода в 100 г метанола закипает при 65,0 °C, а чистый метанол кипит при 64,7 °C. Из скольких атомов состоит молекула йода в растворе метанола? Эбуллиоскопическая постоянная метанола равна 0,84.
- 57. Определите осмотическое давление при 20 $^{\rm o}{\rm C}$ раствора сахара с массовой долей ${\rm C}_{12}{\rm H}_{22}{\rm O}_{11}$ 4 % и плотностью 1,014 г/мл.
- 58. Определите температуру, при которой осмотическое давление раствора, содержащего 45 г глюкозы $C_6H_{12}O_6$ в одном литре воды, равно 607950 Па.
- 59. Давление пара воды при 80 °C равно 47375 Па, а давление пара раствора неэлектролита при этой же температуре -33310 Па. Какое количество воды приходится на один моль растворенного вещества в этом растворе?
- 60. Раствор, содержащий $0.81~\mathrm{r}$ серы в $100~\mathrm{r}$ бензола (эбуллиоскопическая постоянная 2.57) кипит при температуре на $0.081~\mathrm{^oC}$ выше, чем чистый бензол. Из скольких атомов состоит молекула серы?

6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Критерии оценивания контрольных заданий:

5 баллов ставится, если решено правильно 50% контрольного задания

- 6 баллов ставится, если решено 60 % контрольного задания
- 7 баллов ставится, если решено 70 % контрольного задания
- 8 баллов ставится, если решено 80 % контрольного задания
- 9 баллов ставится, если решено 90 % контрольного задания
- 10 баллов ставится, если решено 100 % контрольного задания

Если решено менее 50% контрольного задания, то оно не засчитывается и студент обязан его заново написать.

Критерии оценивания контрольной работы:

- 10 баллов ставится, если решено правильно 50% контрольной работы
- 12 баллов ставится, если решено 60 % контрольной работы
- 14 баллов ставится, если решено 70 % контрольной работы
- 16 баллов ставится, если решено 80 % контрольной работы
- 18 баллов ставится, если решено 90 % контрольной работы
- 20 баллов ставится, если решено 100 % контрольной работы

Если решено менее 50% работы, то она не засчитывается и студент обязан ее заново написать.

Критерии оценивания лабораторных работ:

3 баллов ставится, если студент выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений. Научно грамотно, логично описал наблюдения и сформировал выводы из опыта. В представленном отчете правильно и аккуратно выполнил все записи, таблицы, графики, вычисления и сделал выводы.

2 балластавится, если работа выполнена правильно не менее чем наполовину, но объем выполненной части позволяет получить правильные результаты. В отчете были допущены в общей сложности не более двух ошибок (в вычислениях, таблицах) не принципиального для данной работы характера, но повлиявших на результат выполнения. Допускает грубую ошибку, которая исправляется по требованию преподавателя.

1 балластавится, если объем выполненной части работы не позволяет сделать правильных выводов. В отчете обнаружились в совокупности все недостатки, отмеченные в требованиях к 3 баллам. Допускает две и более грубые ошибки в ходе эксперимента, в объяснении, в оформлении работы, которые не может исправить даже по требованию преподавателя.

Для оценки знаний, умений, навыков и формирования компетенции по дисциплине применятся **балльно-рейтинговая** система контроля и оценки успеваемости студентов

. Система пейтингового учёта знаний и навыков стулентов:

Система реитингового учета знании и навыков студентов:					
Оцениваемый параметр		Интервал оценки	Повтор- ность	Рейтинговая оценка (баллы)	
Посещение	Лекции	0-1	8	4-8	12-16
	Лабораторные работы	0-1	8	8	
Текущая оценка знаний и навыков	Контрольные задания	0-10	4	20-40	44-84
	Отчет о проделанной лабораторной работе	1-3	8	12-24	
	Контрольная работа	0-20	1	12-20	
Итоговая сумма баллов					56-100
Дифференциация итоговой оценки		Неудовлетоврительно 0-55 удовлетворительно – 56-69 хорошо– 70-84 отлично – 85-100			

Студенты, не набравшие минимальную сумму баллов, или не закрывший задолженности до начала экзаменационной сессии, не получают оценку-автомат и сдают экзамен по традиционной системе контроля и оценки успеваемости студентов. Для допуска к экзамену необходимо закрыть все задолженности.

Критерии оценки:

Оценка	Критерии оценивания	
Высокиий уро- вень «5»	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального примене-	
(отлично)	ния освоенных знаний сформированы. Компетенции, закреплённые за дисциплиной, сформированы на уровне – высокий.	
Средний уро- вень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью осво- ивший знания, умения, компетенции и теоретический материал, учеб- ные задания не оценены максимальным числом баллов, в основном сформировал практические навыки. Компетенции, закреплённые за дисциплиной, сформированы на уровне – хороший (средний).	
Пороговый уровень «3» (удовлетворительно)	оценку «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы. Компетенции, закреплённые за дисциплиной, сформированы на уровне – достаточный	
Минимальный	оценку «неудовлетворительно» заслуживает студент, не освоивший	
уровень «2» (не- удовлетвори-	знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы.	
удовлетвори- тельно)	Компетенции, закреплённые за дисциплиной, не сформированы.	

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Основная литература

- 1. Химия : учебник / Л. Н. Блинов, М. С. Гутенев, И. Л. Перфилова, И. А. Соколов. Санкт-Петербург : Лань, 2022. 480 с. ISBN 978-5-8114-1289-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/210977
- 2. Саргаев, П. М. Неорганическая химия : учебное пособие / П. М. Саргаев. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2022. 384 с. ISBN 978-5-8114-1455-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/213263
- 3. Егоров, В. В. Неорганическая и аналитическая химия. Аналитическая химия : учебник / В. В. Егоров, Н. И. Воробьева, И. Г. Сильвестрова. Санкт-Петербург : Лань, 2022. 144 с. ISBN 978-5-8114-1602-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/211559

7.2 Дополнительная литература

- 1. Стась, Н. Ф. Решение задач по общей химии / Н. Ф. Стась, А. В. Коршунов. 4-е изд., стер. Санкт-Петербург : Лань, 2023. 168 с. ISBN 978-5-507-45529-4. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/271322
- 2. Кумыков, Р. М. Физическая и коллоидная химия : учебное пособие для вузов / Р. М. Кумыков, А. Б. Иттиев. 2-е изд., стер. Санкт-Петербург : Лань, 2021. 236 с. ISBN 978-5-8114-7414-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/160121
- 3. Нигматуллин, Н. Г. Практикум по физической и коллоидной химии / Н. Г. Нигматуллин, Е. С. Ганиева. 2-е изд., стер. Санкт-Петербург : Лань, 2023. 116 с. ISBN 978-5-507-45579-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/276443

7.3 Нормативные правовые акты

отсутствуют

7.4 Методические указания, рекомендации и другие материалы к занятиям Отсутствуют

8.Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- http://www.chemnet.ru/(открытый доступ)
- http://elibrary.ru электронная библиотека, содержит статьи из более 30 000 журналов,(открытый доступ)
- http://www.xumuk.ru/(открытый доступ)
- http://www.hemi.nsu.ru/(открытый доступ)

9.Перечень программного обеспечения и информационных справочных систем Отсутствуют

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 10 Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

Наименование специальных помещений и помещений для самостоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и помещений для самостоятельной работы
1	2
корпус 23, аудитория 12	1. Столы лабораторные — 3 шт. 2. Табуретки - 20 шт. 3. Стол преподавательский — 1 шт. 4. Вытяжной шкаф — 1 шт. 5. Табуретки - 10 шт (210136600002899) 6. Доска учебная - 1 шт (410136000001829) 7. Баня комбинированная - 2 шт (210134000000411, 210134000000412) 8. рН метр - 1 шт (210134000002545) 9. Весы прецизионные - 1 шт (410134000001398) 10. Центрифуга лабораторная - 1 шт
wanyya 22 ayyyyanya 201	(410134000000819) 11. Весы порционные SK-1000 - 1 шт (210134000000413)
корпус 22, аудитория 201	1. Столы лабораторные — 3 шт. 2. Табуретки - 20 шт. 3. Стол преподавательский — 1 шт. 4. Вытяжной шкаф - 1 шт. 5 Табуретки - 10 шт (210136600002899) 6. Доска аудиторная - 1 шт (410136000004314) 7. Эл. печь сопротивления - 1 шт (410134000000193) 8. Баня комбинированная - 2 шт (210134000000409, 210134000000410) 9. Центрифуга лабораторно-клиническая - 1 шт (410134000000192) 10. Фотометр КФКЗ - 1 шт (410134000000186) 11. рН метр милливольтметр - 2 шт (410134000000189, 410134000000190)

Для самостоятельной работы студентов используются ресурсы Центральной научной библиотеки имени Н.И. Железнова, включающие 9 читальных залов, организованных по принципу открытого доступа и оснащенных Wi-Fi, Интернет-доступом, в том числе 5 компьютеризированных читальных залов, а также комнаты самоподготовки в общежитиях N_2 4 и N_2 5.

11. Методические рекомендации студентам по освоению дисциплины

Образовательный процесс по дисциплине химия организован в форме учебных занятий (контактная работа (аудиторной и внеаудиторной) обучающихся с преподавателем и самостоятельная работа обучающихся). Учебные занятия представлены следующими видами, включая учебные занятия, направленные на практическую подготовку обучающихся и проведение текущего контроля успеваемости:

лекции;

лабораторные работы;

групповые консультации и индивидуальные консультации, предусматривающие индивидуальную работу преподавателя с обучающимся;

самостоятельная работа обучающихся.

На учебных занятиях обучающиеся выполняют запланированные настоящей программой отдельные виды учебных работ, в том числе отдельных элементов работ, связанных с будущей профессиональной деятельностью.

При изучении дисциплины студенту необходимо посещать лекции, выполнить лабораторные работы и сдать отчет по ним, выполнить контрольные задания по соответствующим разделам, написать контрольную работу.

Перед началом лабораторной работы необходимо изучить теорию вопроса, ознакомиться с руководством по соответствующей работе и подготовить протокол проведения работы: название работы, заготовка таблиц для заполнения экспериментальными данными наблюдений, уравнения химических реакций, расчетные формулы.

Для сдачи отчета следует проанализировать экспериментальные результаты, сопоставить с теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, написать ответы на вопросы, приведенные в методическом пособие.

Виды и формы отработки пропущенных занятий

Студент, пропустивший занятия, обязан выполнить все лабораторные работы, решить все контрольные задания по пропущенной теме.

12. Методические рекомендации преподавателям по организации обучения по дисциплине

Изучение дисциплины следует начинать с проработки рабочей программы, уделив особое внимание целям и задачам, структуре, содержанию курса.

Приступая к чтению лекций, следует выяснить уровень базовых знаний студентов, обрисовать профессиональные цели и перспективы изучения дисциплины, довести до внимания студентов структуру курса и его разделы, а в дальнейшем указывать начало и окончание каждого раздела (темы), обучающие задачи, итог и связь со следующим. Желательно разъяснить особенности конспектирования лекций по данной дисциплине. Одновременное предоставление краткого иллюстрированного лекционного курса в электронном варианте позволит значительно экономить лекционное время. Однако это не означает отмену классического лекционного процесса, частью которого является написание конспектов - для фиксации полученной информации в памяти студента. Основные положения курса, определения и выводы по наиболее проблемным вопросам выделяются интонацией или выносятся на аудиторную доску (мультимедийный экран). Необходимый иллюстративный материал предлагается к ознакомлению в виде мультимедиа-презентацийили плакатов. Теоретические положения поясняются практическими примерами, характерными для предметной области. С целью активизации внимания студентов рекомендуется вносить в процесс лекции элемент дискуссии, обращаясь к подлинным фактам, личному опыту преподавателя и наблюдениям слушателей. Этому же служит тесная связь теоретических положений и выводов с практикой и будущей профессиональной деятельностью студентов.

При организации лабораторных работ важно правильно определить приоритетные направления в выборе задач и заданий. Это актуальные вопросы теории и их практического приложения, отработка характерных предмету действий. Задания на лабораторные работы

должны отвечать учебному плану дисциплины и быть направлены на развитие самостоятельности и творческой активности студентов. В зависимости от содержания, лабораторные работы выполняются студентами индивидуально или группами, что позволяет развивать навыки творческого общения, выполнять работу качественно, в срок и с соблюдением правил техники безопасности. Перед тем, как разрешить студентам приступить к выполнению работы, следует убедиться в их подготовленности. В процессе работы допускается необходимое перемещение студентов по аудитории, однако запрещено бесцельное хождение и нарушение порядка. Проверку отчетов проводить после окончания работы в лаборатории.

Программу разработал:	
Коноплев В.Е., к.х.н., доцент	

РЕЦЕНЗИЯ

на рабочую программу дисциплины Б1.О.14 «Химия» ОПОП ВО по направлению 23.03.01 Технология транспортных процессов, направленность «Цифровые транспортно-логистические системы автомобильного транспорта»

(квалификация выпускника – бакалавр)

Павловым Александром Егоровичем, доцентом кафедры сопротивления материалов и деталей машин ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», доктором физико-математических наук (далее по тексту рецензент), проведена рецензия рабочей программы дисциплины «Химия» ОПОП ВО по направлению 23.03.01 Технология транспортных процессов, направленность «Цифровые транспортно-логистические системы автомобильного транспорта» (бакалавриат) разработанной в ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», на кафедре материаловедения и технологии машиностроения (разработчик — Коноплев Виталий Евгеньевич, доцент кафедры материаловедения и технологии машиностроения, кандидат химических наук).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

- 1. Предъявленная рабочая программа дисциплины «Химия» (далее по тексту Программа) <u>соответствует</u> требованиям ФГОС ВО по направлению **23.03.01** Технология транспортных процессов. Программа <u>содержит</u> все основные разделы, <u>соответствует</u> требованиям к нормативно-методическим документам.
- 2. Представленная в Программе *актуальность* учебной дисциплины в рамках реализации ОПОП ВО *не подлежит сомнению* дисциплина относится к обязательной части учебного цикла 51.
- 3. Представленные в Программе *цели* дисциплины *соответствуют* требованиям ФГОС ВО направления 23.03.01 Технология транспортных процессов.
- 4. В соответствии с Программой за дисциплиной «Химия» закреплено 1 компетенция. Дисциплина «Химия» и представленная Программа <u>способна реализовать</u> их в объявленных требованиях. Результаты обучения, представленные в Программе в категориях знать, уметь, владеть <u>соответствуют</u> специфике и содержанию дисциплины и <u>демонстрируют возможность</u> получения заявленных результатов.
- 5. Общая трудоёмкость дисциплины «Химия» составляет 3 зачётных единицы (108 часов).
- 6. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин <u>соответствует</u> действительности. Дисциплина «Химия» взаимосвязана с другими дисциплинами ОПОП ВО и Учебного плана по направлению **23.03.01** Технология транспортных процессов и возможность дублирования в содержании отсутствует.
- 7. Представленная Программа предполагает использование современных образовательных технологий, используемые при реализации различных видов учебной работы. Формы образовательных технологий *соответствуют* специфике дисциплины.
- 8. Программа дисциплины «Химия» предполагает занятия в интерактивной форме.
- 9. Виды, содержание и трудоёмкость самостоятельной работы студентов, представленные в Программе, *соответствуют* требованиям к подготовке выпускников,

содержащимся во ФГОС ВО направления 23.03.01 Технология транспортных процессов.

10. Представленные и описанные в Программе формы *текущей* оценки знаний (контрольные работы, отчеты по лабораторной работе, работа над домашним заданием), *соответствуют* специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний студентов, предусмотренная Программой, осуществляется в форме экзамена, что <u>соответствует</u> статусу дисциплины, как дисциплины обязательной части учебного цикла — Б1 ФГОС ВО направления **23.03.01** Технология транспортных процессов.

- 11. Формы оценки знаний, представленные в Программе, *соответствуют* специфике дисциплины и требованиям к выпускникам.
- 12. Учебно-методическое обеспечение дисциплины представлено: основной литературой -3 источника, дополнительной литературой -3 наименования, Интернет-ресурсы -4 источников и <u>соответствует</u> требованиям ФГОС ВО направления **23.03.01** Технология транспортных процессов.
- 13. Материально-техническое обеспечение дисциплины соответствует специфике дисциплины «Химия» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.
- 14. Методические рекомендации студентам и методические рекомендации преподавателям по организации обучения по дисциплине дают представление о специфике обучения по дисциплине «Химия».

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины «Химия» ОПОП ВО по направлению 23.03.01 Технология транспортных процессов, направленность «Цифровые транспортно-логистические системы автомобильного транспорта» (квалификация выпускника — бакалавр), разработанная доцентом кафедры материаловедения и технологии машиностроения, кандидатом химических наук, Коноплев В.Е., соответствует требованиям ФГОС ВО, современным требованиям экономики, рынка труда и позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Рецензент: Павлов А.Е., доцент кафедры сопротивления материалов и деталей машин
ФГБОУ ВО «Российский государственный аграрный университет – MCXA имени
К.А. Тимирязева», доктор физико-математических наук

« »

2023 г.