Институт мелиорации, водного хозяйства и строительства имени А.Н. Костякова Кафедра физики

УТВЕРЖДАЮ:
И.о. директора института механики и энергетики имени В.П. Горячкина
А.С. Апатенко
2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.07 ФИЗИКА

для подготовки бакалавров

ΦΓΟС ΒΟ

Направление: 35.03.06 Агроинженерия

Направленность: Электрооборудование и электротехнологии;

Автоматизация и роботизация технологических процессов

Курс 1, 2 Семестр 2, 3, 4 Форма обучения - очная Год начала подготовки - 2023 Разработчик: Коноплин Н.А., к.ф.-м.н., доцент (ФИО, ученая степень, ученое звание) 2023 г. Рецензент: Понизовкин Д.А., к.т.н., доцент 2023 г. Программа составлена в соответствии с требованиями ФГОС ВО, профессионального стандарта и учебного плана по направлению подготовки 35.03.06 Агроинженерия Программа обсуждена на заседании кафедры физики протокол № 8 от « 30 » 06 2023 г. И.о. зав. кафедрой физики Коноплин Н.А., к.ф.-м.н., доцент (ФИО, ученая степень, ученое звание) 2023 г. Согласовано: Председатель учебно-методической комиссии института механики и энергетики имени В.П. Горячкина Дидманидзе О.Н., д.т.н., профессор (ФИО, ученая степень, ученое звание) 2023 г. Заведующий выпускающей кафедрой автоматизации и роботизации технологических процессов имени академика И.Ф. Бородина Сторчевой В.Ф., д.т.н., профессор (ФИО, ученая степень, ученое звание) «ДВ» ОВ 2023 г.

Зав. отделом комплектования ЦНБ

2

СОДЕРЖАНИЕ

АННОТАЦИЯ	4
1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	5
2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ	5
3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, COOTHECE С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	ЖННЫХ 5
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
4.1 РАСПРЕДЕЛЕНИЕ ТРУДОЁМКОСТИ ДИСЦИПЛИНЫ ПО ВИДАМ РАБОТ	5 7
4.3 ЛЕКЦИИ/ЛАБОРАТОРНЫЕ/ ПРАКТИЧЕСКИЕ ЗАНЯТИЯ	
5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	
6. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТОГ ОСВОЕНИЯ ДИСЦИПЛИНЫ	`AM 19
6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, уме навыков и (или) опыта деятельности	19
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	27
7.1 ОСНОВНАЯ ЛИТЕРАТУРА	27 27
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	30
9. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)	30
10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	30
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	I 32
Виды и формы отработки пропущенных занятий	33
12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧЕНІ ДИСЦИПЛИНЕ	

Аннотация

рабочей программы учебной дисциплины Б1.О.07 «ФИЗИКА» для подготовки специалиста по направлению 35.03.06 Агроинженерия направленности Электрооборудование и электротехнологии; Автоматизация и роботизация технологических процессов

Цель освоения дисциплины: изучение основных физических явлений; овладение фундаментальными понятиями, законами и теориями классической и современной физики, методами физического исследования, в том числе с применением цифровых приборов; формирование способности решать типовые задачи профессиональной деятельности на основе основных законов физики с применением информационно-коммуникационных технологий.

Место дисциплины в учебном плане: дисциплина включена в обязательную часть учебного плана по направлению подготовки 35.03.06 Агроинженерия направленности Электрооборудование и электротехнологии; Автоматизация и роботизация технологических процессов.

Требования к результатам освоения дисциплины: в результате освоения дисциплины формируются следующие компетенции (индикаторы): ОПК-1 (ОПК-1.1).

Краткое содержание дисциплины: механика материальной точки и твердого тела, элементы механики сплошных сред, колебания и волны, молекулярно-кинетическая теория, термодинамика, электростатика, постоянный ток, магнитное поле, теория электромагнитного поля, волновые и квантовые свойства света, строение атома, элементы квантовой механики, ядерная физика.

Общая трудоемкость дисциплины: 288 часов / 8 зач. ед.

Промежуточный контроль: 2, 4 семестры – экзамен, 3 – зачет.

1. Цель освоения дисциплины

Целью освоения дисциплины является: изучение основных физических явлений; овладение фундаментальными понятиями, законами и теориями классической и современной физики, методами физического исследования, в том числе с применением цифровых приборов; формирование способности решать типовые задачи профессиональной деятельности на основе основных законов физики с применением информационно-коммуникационных технологий.

2. Место дисциплины в учебном процессе

Дисциплина «Физика» включена в перечень дисциплин учебного плана обязательный части. Дисциплина «Физика» реализуется в соответствии с требованиями ФГОС ВО, ОПОП ВО и учебного плана по направлению 35.03.06 Агроинженерия направленности Электрооборудование и электротехнологии; Автоматизация и роботизация технологических процессов.

Предшествующим курсом, на котором непосредственно базируется дисциплина «Физика», является «Математика».

Дисциплина «Физика» является основополагающей для изучения следующих дисциплин: «Гидравлика», «Теплотехника», «Прикладная механика», «Электрические измерения», «Теоретические основы электротехники», «Светотехника».

Особенностью дисциплины является ее базовый характер для технических и естественнонаучных дисциплин.

Рабочая программа дисциплины «Физика» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Образовательные результаты освоения дисциплины обучающимися, представлены в таблице 1.

4. Структура и содержание дисциплины 4.1 Распределение трудоёмкости дисциплины по видам работ по семестрам

Общая трудоёмкость дисциплины составляет 8 зач. ед. (288 часа), их распределение по видам работ семестрам представлено в таблице 2.

Требования к результатам освоения учебной дисциплины

Код Содержание Индикаторы В результате изучения учебной дисциплины обучающиеся должны: $N_{\underline{0}}$ компетенций компекомпетенции Π/Π знать уметь владеть (или её части) тенции Способен ре- ОПК-1.1. основные понятия, за-применять физические знаспособностью решать ОПК-1 ния при решении типовых типовые Использует основные законы и модели механитестовые задания, шать ки, статистической фифизических задач, образуотвечать на поставзадачи профес- коны естественнонаучных зики и термодинамики, ющих базу типовых задач ленные вопросы по сиональной де- дисциплин для решения электричества и магне- профессиональной деятельосновным физичеятельности на стандартных задач в сотизма, теории колеба- ности; работать с лабораским законам, поняоснове знаний ответствии с направленний и волн, квантовой торным оборудованием, тиям и определениям основных зако- ностью профессиональфизики, атомной и оснащенным компьютерной деятельности нов математиядерной физики ными измерительными датческих и естечиками и специализированственных наук с ным программным обеспеприменением чением по снятию показаний датчиков и обработке информационданных; считывать показанония, анализировать и прекоммуникациобразовывать информацию, онных технолоуправлять цифровыми пригий борами

Таблица 1

-		Труд	оёмкость	
Вид учебной работы	час.	В т.ч. по	семестрам	
	всего/*	№ 2	№ 3	№ 4
Общая трудоёмкость дисциплины по	288/0	108	72	108
учебному плану	200/0	100	12	100
1. Контактная работа:	121,05	44,4	32,25	44,4
Аудиторная работа	121,05	44,4	32,25	44,4
в том числе:				
лекции (Л)	44	14	16	14
лабораторные работы (ЛР)	44	14	16	14
практические занятия (ПЗ)	28	14	-	14
консультации перед экзаменом	4	2	-	2
контактная работа на промежу-	1,05	0,4	0,25	0,4
точном контроле (КРА)	1,03	0,4	0,23	0,4
2. Самостоятельная работа (СРС)	166,95	63,6	39,75	63,6
контрольная работа	30	10	10	10
самостоятельное изучение разде- лов, самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лаборатор- ным и практическим занятиям т.д.)	60,75	29	20,75	11
Подготовка к экзамену / зачету (контроль)	76,2	24,6	9	42,6
Вид промежуточного контроля:		экзамен	зачет	экзамен

ид промежуточного контроля:

* в том числе практическая подготовка

4.2 Содержание дисциплины

Таблица 3

Тематический план учебной дисциплины

H	Всего	A	удитор	Внеаудитор		
Наименование разделов и тем дисциплин (укрупнённо)		Л	ПЗ	ЛР	ПКР	ная работа
дисциплин (укрупненно)						CP
Раздел 1 «Физические основы механики»	38	6	6	6	-	20
Раздел 2 «Колебания и волны»	30	4	2	4	-	20
Раздел 3 «Молекулярная физика и	37,6	4	6	4	-	23,6
термодинамика»						
Консультации перед экзаменом	2	-	-	-	2	-
Контактная работа на промежуточном	0,4	-	-	-	0,4	-
контроле (КРА)						
Всего за 2 семестр	108	14	14	14	2,4	63,6
Раздел 4 «Электричество»	35,75	8	-	8	-	19,75
Раздел 5 «Магнетизм»	36	8	-	8	-	20
Контактная работа на промежуточном	0,25	-	-	-	0,25	-
контроле (КРА)						
Всего за 3 семестр	72	16	-	16	0,25	39,75
Раздел 6 «Оптика»	56	8	8	10	-	30
Раздел 7 «Квантовая физика»	20	4	2	4	-	10

Наименование разделов и тем дисциплин (укрупнённо)		Аудиторная работа				Внеаудитор
		Л	П3	ЛР	ПКР	ная работа СР
Раздел 8 «Ядерная физика»	29,6	2	4	-	-	23,6
Контактная работа на промежуточном контроле (KPA)	0,4	-	_	-	0,4	-
Консультации перед экзаменом	2	-	-	-	2	-
Всего за 4 семестр	108	14	14	14	2,4	63,6
Итого по дисциплине	288	44	28	44	5,05	166,95

^{*} в том числе практическая подготовка

Раздел 1 «Физические основы механики»

Тема 1 «Кинематика»

Предмет физики. Методы физического исследования. Роль физики в развитии техники и влияние техники на развитие физики. Механическое движение как простейшая форма движения материи. Классическая механика. Пространство и время в классической механике. Физические модели. Кинематическое описание движения точки. Скорость и ускорение при криволинейном движении. Нормальное и касательное (тангенциальное) ускорения. Движение точки по окружности. Векторы угловой скорости и углового ускорения. Связь линейных скоростей и ускорений с угловыми скоростями и ускорениями.

Тема 2 «Динамика»

Динамика. Механическая система. Сила. Масса и импульс. Современная трактовка законов Ньютона. Силы в механике. Импульс системы материальных точек. Закон сохранения импульса. Обобщенная формулировка II закона Ньютона. Закон всемирного тяготения.

Тема 3 «Энергия»

Энергия как универсальная мера различных форм движения и взаимодействия. Работа силы. Консервативные и неконсервативные силы. Мощность. Кинетическая энергия механической системы. Потенциальная энергия. Закон сохранения энергии в механике.

Тема 4 «Динамика вращательного движения»

Момент инерции. Теорема Штейнера. Момент силы. Основное уравнение динамики вращательного движения твердого тела. Кинетическая энергия вращающегося и катящегося твердого тела.

Тема 5 «Момент импульса»

Момент импульса материальной точки, механической системы и тела. Закон сохранения момента импульса. Основное уравнение динамики вращательного движения твердого тела в обобщенном виде.

Тема 6 «Деформация твердого тела»

Деформация в твердом теле. Закон Гука.

Тема 7 «Механика жидкостей и газов»

Гидростатика несжимаемой жидкости. Давление столба жидкости. Сила Архимеда. Стационарное течение идеальной жидкости. Уравнение неразрывности. Уравнение Бернулли. Вязкость жидкости. Режимы течения. Число Рейнольдса.

Раздел 2 «Колебания и волны»

Тема 1 «Гармонические колебания»

Классификация колебаний. Уравнение гармонических колебаний. Механические колебания. Энергия колебаний. Дифференциальное уравнение гармонических колебаний. Маятники.

Тема 2 «Волны»

Волновое движение. Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны.

Раздел 3 «Молекулярная физика и термодинамика»

Тема 1 «Молекулярно-кинетическая теория» (МКТ)

Основное уравнение молекулярно-кинетической теории идеальных газов. Температурная шкала Цельсия и Кельвина. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.

Тема 2 «Термодинамика»

Термодинамические параметры. Термодинамическое равновесие и процесс. Уравнение состояния идеального газа. Изопроцессы. Первое начало термодинамики. Работа газа. Теплообмен, количество теплоты. Внутренняя энергия идеального газа. Число степеней свободы. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Теплоемкость. Уравнение Майера. Коэффициент Пуассона. Тепловые двигатели. Теорема Карно. Цикл Карно и его к.п.д. Энтропия. Теорема Нернста-Планка. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы.

Тема 3 «Явления переноса»

Явления переноса. Диффузия, теплопроводность, внутрение трение.

Раздел 4 «Электричество»

Тема 1 «Основы электростатики»

Электрические заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона. Электростатическое поле, его характеристики. Эквипотенциальные поверхности и силовые линии электростатического поля. Принцип суперпозиции полей. Связь напряженности и потенциала. Градиент потенциала.

Тема 2 «Проводники в электрическом поле»

Проводники в электростатическом поле. Равновесие зарядов в проводнике. Ёмкость проводников и конденсаторов. Соединения конденсаторов. Энергия заряженного конденсатора.

Тема 3 «Диэлектрики в электрическом поле»

Типы диэлектриков. Поляризация диэлектриков и ее виды. Поляризованность диэлектриков. Диэлектрическая восприимчивость и проницаемость. Вектор электрического смещения.

Тема 4 «Постоянный электрический ток»

Постоянный электрический ток, условия его существования и основные характеристики. Сторонние силы. Понятие ЭДС и напряжения. Сопротивление проволочного проводника. Соединения проводников. Закон Ома в интегральной форме для однородного и неоднородного участков цепи, для полной цепи. Закон Джоуля — Ленца в интегральной форме. Мощность тока

Тема 5 «Элементы физики твердого тела»

Полупроводники. Зонная теория твердого тела. Собственная и примесная проводимость полупроводников. Диод.

Раздел 5 «Магнетизм»

Тема 1 «Магнитостатика»

Магнитное поле и его характеристики. Макро- и микротоки. Воздействие магнитного поля на рамку с током и на прямолинейный проводник с током. Силовые линии магнитной индукции. Силовая картина магнитного поля прямолинейного проводника с током и кругового витка. Принцип суперпозиции магнитных полей. Закон Био — Савара — Лапласа. Воздействие магнитного поля на движущийся заряд. Сила Лоренца.

Тема 2 «Магнитное поле в веществе»

Намагничивание магнетиков. Напряженность магнитного поля. Магнитная проницаемость и магнитная восприимчивость. Диамагнетики, парамагнетики и ферромагнетики.

Тема 3 «Электромагнитная индукция»

Электромагнитная индукция. ЭДС индукции в подвижных и неподвижных проводниках. Вращение рамки в магнитном поле. Токи Фуко. Самоиндукция. Индуктивность проводника.

Тема 4 «Уравнения Максвелла»

Система уравнений Максвелла в интегральной форме.

Тема 5 «Электромагнитные колебания и волны»

Колебательный контур. Преобразование энергии на различных этапах колебания. Электромагнитная волна. Шкала электромагнитных волн.

Раздел 6 «Оптика»

Тема 1 «Геометрическая оптика»

Оптика. Законы геометрической оптики. Полное внутреннее отражение. Линзы.

Тема 2 «Интерференция волн»

Интерференция света. Условия возникновения интерференции. Принцип получения интерфереционной картины. Условия максимумов и минимумов. Интерференция в тонкой пленке. Кольца Ньютона.

Тема 3 «Дифракция волн»

Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля. Дифракция на круглом отверстии. Дифракционная решетка. Главные максимумы. Главные минимумы. Разрешающая способность.

Тема 4 «Поляризация волн»

Поляризованный свет. Виды поляризации. Способы получения поляризованного света. Прохождение естественного света через поляризатор и анализатор. Поворот плоскости поляризации. Закон Брюстера.

Тема 5 «Квантовые свойства электромагнитного излучения»

Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект. Световое давление. Тепловое излучение. Закон Кирхгофа. Абсолютно черное тело. Закон Стефана-Больцмана. Закон Вина.

Раздел 7 «Квантовая физика»

Тема 1 «Строение атома»

Модель атома Резерфорда-Бора. Эмпирические закономерности в атомных спектрах. Теория Бора.

Тема 2 «Элементы квантовой механики»

Волновые свойства микрочастиц. Длина волны де Бройля и ее свойства. Волновая функция. Уравнение Шредингера.

Раздел 8 «Ядерная физика»

Тема 1 «Ядро и ядерные реакции»

Состав атомного ядра. Характеристики ядра. Ядерные силы. Энергия связи ядра. Дефект масс. Энергетический эффект ядерной реакции. Радиоактивное излучение и его виды. Закон радиоактивного распада. Ядерные реакции.

Тема 2 Элементарные частицы

Основные классы элементарных частиц.

4.3 Лекции / лабораторные / практические занятия

Таблица 4

Содержание лекций / лабораторных работ / практических занятий и контрольные мероприятия

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий кие основы механики»	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка 18/0
1.	Тема 1. «Кинема-	лекция № 1.1	ОПК-1		2
	тика»	«Кинематика. Динамика.	(ОПК-1.1)		2
	Тема 2 «Динами-	Энергия»	(OIIK-1.1)		
	ка»	Использование мультимедийного			
	Тема 3 «Энергия»	проектора			
	Тема 4 «Динамика	Лекция № 1.3 «Динамика	ОПК-1		2
	вращательного	вращательного движения»	(ОПК-1.1)		
	движения»	Использование мультимедийного			
		проектора			

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	Тема 5 «Момент импульса» Тема 6 «Деформация твердого тела» Тема 7 «Механика жидкостей и газов»	Лекция № 1.4 «Момент импульса. Деформация твердого тела. Механика жидкостей и газов» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1. «Кинематика» Тема 2 «Динамика» Тема 3 «Энергия» Тема 4 «Динамика вращательного движения» Тема 5 «Момент импульса» Тема 6 «Деформация твердого тела»	Лабораторная работа № 1.1 «Изучение движения тела по наклонной плоскости» или «Изучение законов прямолинейного движения и свободного падения на машине Атвуда» или «Изменение коэффициента трения качения» или «Изучение закона сохранения энергии с помощью маятника Максвелла» или «Изучение основного закона динамики вращательного движения с помощью маятника Обербека» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4
	Тема 7 «Механика жидкостей и га- зов»	Лабораторная работа № 1.2 «Определение коэффициента вязкости жидкости методом течения через узкий канал» или «Определение коэффициента вязкости методом падающего шарика» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	2
	Тема 1. «Кинематика» Тема 2 «Динамика» Тема 3 «Энергия»	Практическое занятие № 1.1. «Кинематика. Динамика. Энергия»	ОПК (ОПК-1.1)	Решение задач	2
	Тема 4 «Динамика вращательного движения» Тема 5 «Момент импульса»	Практическое занятие № 1.2. «Динамика вращательного движения. Момент импульса».	ОПК-1 (ОПК-1.1)	Решение задач	2

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	Тема 6 «Деформация твердого тела» Тема 7 «Механика жидкостей и газов»	Практическое занятие № 1.3 «Деформация твердого тела. Механика жидкостей и газов»	ОПК-1 (ОПК-1.1)	Решение задач	2
2.	Раздел 2. «Колебані	ия и волны»			10/0
	Тема 1 «Гармонические колебания»	Лекция № 2.1 «Гармонические колебания» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 2 «Волны»	Лекция № 1.2 «Волны» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Гармонические колебания» Тема 2 «Волны» Тема 1 «Гармони-	Лабораторная работа № 2.1 «Изучение свободных колебаний пружинного маятника» или «Определение приведенной длины физического маятника и ускорения силы тяжести» или «Изучение волновых явления на поверхности воды» или «Изучение собственных колебаний струны» с применением цифровых устройств для получения и обработки экспериментальных данных Практическое занятие № 2.1	ОПК-1 (ОПК-1.1)	Защита лабора- торных работ	2
	ческие колебания» Тема 2 «Волны»	«Гармонические колебания. Волны».	(ОПК-1.1)	задач	
3.	Раздел 3. «Молекул	ярная физика и термодинамика			14/0
	Тема 1 «Молеку-лярно-кинетическая теория»	Лекция № 3.1 «Молекулярно-кинетическая теория» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 2 «Термодинамика» Тема 3 «Явления переноса	Лекция № 3.2 «Термодина- мика. Явления переноса» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Молекулярно- кинетическая теория»	Лабораторная работа № 3.1 «Определение отношения теплоемкостей воздуха при постоянном давлении и по-	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4

.№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	Тема 2 «Термодинамика»	стоянном объеме» или «Определение универсальной газовой постоянной» или «Исследование изопроцессов» с применением цифровых устройств для получения и обработки экспериментальных данных			
	Тема 1 «Молекулярно- кинетическая теория»	Практическое занятие № 3.1 «Молекулярно-кинетическая теория».	ОПК-1 (ОПК-1.1)	Решение задач	2
	Тема 2 «Термодинамика»	Практическое занятие № 3.1 «Термодинамика. Явления переноса».	ОПК-1 (ОПК-1.1)	Решение задач	2
	Разделы № 1-3	Практическое занятие №3.2 «Контрольная работа по разделам 1 — 3»	ОПК-1 (ОПК-1.1)	Кон- трольная работа	2
4.	Раздел 4. «Электриче	ество»			16/0
	Тема 1 «Основы электростатики»	Лекция № 4.1 «Основы электростатики» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 2 «Проводники в электрическом поле» Тема 3 «Диэлектрики в электрическом поле»	Лекция № 4.2 «Проводники и диэлектрики в электрическом поле» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 4 «Постоянный электрический ток»	Лекция № 4.3 «Постоянный электрический ток» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 4 «Постоянный электрический ток» Тема 5 «Элементы физики твердого тела»	Лекция № 4.4 «Правила Кирхгофа. Элементы физики твердого тела» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Основы	Лабораторная работа № 4.1	ОПК-1	защита	4

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	электростатики» Тема 2 «Проводники в электрическом поле» Тема 3 «Диэлектрики в электрическом поле»	«Изучение топографии электрического поля» или «Определение емкости конденсатора с помощью баллистического гальванометра» с применением цифровых устройств для получения и обработки экспериментальных данных	(ОПК-1.3)	лабора- торных работ	
	Тема 4 «Постоянный электрический ток» Тема 5 «Элементы физики твердого тела»	Лабораторная работа № 4.2 «Изменение сопротивления методом мостовой схемы» или «Исследование полезной мощности и коэффициента полезного действия источников постоянного тока» или «исследование вольтамперной характеристики полупроводникового диода» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4
5.	Раздел 5. «Магнетиз				16/0
	Тема 1 «Магнито- статика»	Лекция № 5.1 «Магнитостатика» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 2 «Магнитное поле в веществе»	Лекция № 5.2 «Магнитное поле в веществе» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 3 «Электромагнитная индукция» Тема 4 «Уравнения Максвелла»	Лекция № 5.3 «Электромагнитная индукция. Уравнения Максвелла» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 5 «Электромагнитные колебания и волны»	Лекция № 5.4 «Электромагнитные колебания и волны» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Магнито- статика»	Лабораторная работа № 5.1 «Определение горизонтальной составляющей напряженности магнитного поля Земли» с применением цифровых устройств для получения и обра-	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	Тема 2 «Магнитное поле в веществе» Тема 3 «Электромагнитная индукция» Тема 4 «Уравнения Максвелла» Тема 5 «Электромагнитные коле-	ботки экспериментальных данных Лабораторная работа № 5.2 «Снятие петли гистерезиса ферромагнитного стержня» или «Определение индуктивности катушки с железным сердечником и без сердечника» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4
	бания и волны»	«Контрольная работа по разделам 4 – 5»	ОПК-1 (ОПК-1.1)	Кон- трольная работа	Са- мо- стоя- тель ная ра- бота
6.	Раздел 6. «Оптика»				26/0
	Тема 1 «Геометрическая оптика»	Лекция № 6.1 «Геометриче- ская оптика» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 2 «Интерференция волн»	Лекция № 6.2 «Интерференция волн. Дифракция волн» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 3 «Дифракция волн» Тема 4 «Поляризация волн»	Лекция № 6.3 «Дифракция волн. Поляризация волн» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 5 «Квантовые свойства электромагнитного излучения»	Лекция № 6.4 «Квантовые свойства света. Тепловое излучение» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Геометрическая оптика» Тема 2 «Интерференция волн»	Практическое занятие № 6.1. «Геометрическая оптика. Интерференция волн.»	ОПК-1 (ОПК-1.1)	Решение задач	2
	Тема 3 «Дифракция волн» Тема 4 «Поляризация волн»	Практическое занятие № 6.2. «Дифракция волн. Поляризация волн»	ОПК-1 (ОПК-1.1)	Решение задач	2
	эмции воли				

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	вые свойства электромагнитного из-	«Квантовые свойства света»	(ОПК-1.1)	задач	
	лучения»	Практическое занятие № 6.4 «Тепловое излучение»	ОПК-1 (ОПК-1.1)	Решение задач	2
	Тема 1 «Геометрическая оптика» Тема 2 «Интерференция волн»	Лабораторная работа № 6.1 «Определение показателей жидкостей с помощью рефрактометра» или «Определение радиуса кривизны линзы с помощью колец Ньютона» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4
	Тема 3 «Дифракция волн» Тема 4 «Поляризация волн»	Лабораторная работа № 6.2 «Определение длины световой волны с помощью дифракционной решетки» или «Определение концентрации сахарного раствора с помощью сахариметра» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4
	Тема 5 «Квантовые свойства электромагнитного излучения»	Лабораторная работа № 6.3 «Экспериментальное изучение законов теплового излучения» или «Исследование внешнего фотоэффекта» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	2
7.	Раздел 7. «Квантова				10/0
	Тема 1 «Строение атома»	Лекция № 7.1 «Строение атома» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 2 «Элементы квантовой механики»	Лекция № 7.2 «Волновые свойства микрочастиц» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Строение атома» Тема 2 «Элементы квантовой механики»	Практическое занятие № 7.1 «Строение атома. Элементы квантовой механики»	ОПК-1 (ОПК-1.1)	Решение задач	2

№ п/п	Название раздела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируемые компетенции	Вид контроль ного мероприя тия	Кол- во Ча- сов / из них прак- тиче- ская подго- товка
	Тема 1 «Строение атома» Тема 2 «Элементы квантовой механики»	Лабораторная работа № 7.1 «Изучение спектров излучения газообразных веществ» или «Определение длины волны с помощью спектроскопа» с применением цифровых устройств для получения и обработки экспериментальных данных	ОПК-1 (ОПК-1.1)	защита лабора- торных работ	4
8.	Раздел 8. «Ядерная	физика»			6 /0
	Тема 1 «Ядро и ядерные реакции»	Лекция № 8.1 «Строение ядра. Радиоактивное излучение Ядерные реакции»» Использование мультимедийного проектора	ОПК-1 (ОПК-1.1)		2
	Тема 1 «Ядро и ядерные реакции»	Практическое занятие № 8.1. «Ядро и ядерные реакции»	ОПК-1 (ОПК-1.1)	Решение задач	2
	Разделы № 6-8	Практическое занятие № 8.2 «Контрольная работа по разделам $6-8$ »	ОПК-1 (ОПК-1.1)	Кон- трольная работа	2

Таблица 5 **Перечень вопросов для самостоятельного изучения дисциплины**

№ п/п	Назва ние разде- ла,	Перечень рассматриваемых вопросов для самостоятельного изучения и перечень компетенций (индикаторов достижения компетенций), осваиваемых при их изучении (может осваиваться часть компетенции)	
Разд	темы тел 1		
1.	Тема 2	Закон всемирного тяготения. Центр масс механической системы, закон движения центра масс. Движение тел с переменной массой. (ОПК-1 (ОПК-1.1))	
Разд	Раздел 2		
1.	Тема 2	Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны ОПК-1 (ОПК-1.1))	
Разд	ел 3		
1.	Тема 2	Применение первого начала термодинамики к изопроцессам (ОПК-1 (ОПК-1.1))	
Разд	Раздел 4		
1.	Тема 3	Электрическое поле в однородном диэлектрике (ОПК-1 (ОПК-1.1))	
Разд	ел 5		
1.	Тема 5	Энергетические характеристики электромагнитных волн (ОПК-1 (ОПК-1.1))	
Разд	Раздел 6		

№ п/п	Назва ние разде- ла, темы	Перечень рассматриваемых вопросов для самостоятельного изучения и перечень компетенций (индикаторов достижения компетенций), осваиваемых при их изучении (может осваиваться часть компетенции)		
1.	Тема 1	Линзы (ОПК-1 (ОПК-1.1))		
Разд	Раздел 7			
1.	Тема 1	Эмпирические закономерности в атомных спектрах (ОПК-1 (ОПК-1.1))		
Раздел 7				
1.	Тема 2	Основные классы элементарных частиц (ОПК-1 (ОПК-1.1))		

5. Образовательные технологии

Таблица 6 **Применение активных и интерактивных образовательных технологий**

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий
1.	Лабораторная работа № 1.1	ЛР	Работа в ма-
	«Изучение движения тела по наклонной плоскости» или «Изу-		лых группах
	чение законов прямолинейного движения и свободного падения		
	на машине Атвуда» или «Изменение коэффициента трения ка-		
	чения» или «Изучение закона сохранения энергии с помощью		
	маятника Максвелла» или «Изучение основного закона динами-		
	ки вращательного движения с помощью маятника Обербека»	пр	D C
2.	Лабораторная работа № 1.2	ЛР	Работа в ма-
	«Определение коэффициента вязкости жидкости методом течения через узкий канал» или «Определение коэффициента вязко-		лых группах
	сти методом падающего шарика»		
3.	Лабораторная работа № 2.1	ЛР	Работа в ма-
"	«Изучение свободных колебаний пружинного маятника» или	• • • • • • • • • • • • • • • • • • •	лых группах
	«Определение приведенной длины физического маятника и		
	ускорения силы тяжести» или «Изучение волновых явления на		
	поверхности воды» или «Изучение собственных колебаний		
	струны»		
4.	Лабораторная работа № 3.1	ЛР	Работа в ма-
	«Определение отношения теплоемкостей воздуха при постоян-		лых группах
	ном давлении и постоянном объеме» или «Определение универ-		
	сальной газовой постоянной» или «Исследование изопроцес-		
	COB»	ПЪ	D
5.	Лабораторная работа № 4.1	ЛР	Работа в ма-
	«Изучение топографии электрического поля» или «Определение		лых группах
	емкости конденсатора с помощью баллистического гальвано- метра»		
6.	метра» Лабораторная работа № 4.2	ЛР	Работа в ма-
0.	«Изменение сопротивления методом мостовой схемы» или «Ис-	711	лых группах
	следование полезной мощности и коэффициента полезного дей-		JIBIA I PYIIIIAA
	спедование полеэной мощности и коэффициента полеэного дей-		

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий
	ствия источников постоянного тока» или «исследование вольт-		
7.	амперной характеристики полупроводникового диода» Лабораторная работа № 5.1 «Определение горизонтальной составляющей напряженности магнитного поля Земли»	ЛР	Работа в ма- лых группах
8.	Лабораторная работа № 5.2 «Снятие петли гистерезиса ферромагнитного стержня» или «Определение индуктивности катушки с железным сердечником и без сердечника»	ЛР	Работа в ма- лых группах
9.	Лабораторная работа № 6.1 «Определение показателей жидкостей с помощью рефрактометра» или «Определение радиуса кривизны линзы с помощью колец Ньютона»	ЛР	Работа в ма- лых группах
10.	Лабораторная работа № 6.2 «Определение длины световой волны с помощью дифракционной решетки» или «Определение концентрации сахарного раствора с помощью сахариметра»	ЛР	Работа в ма- лых группах
11.	Лабораторная работа № 6.3 «Экспериментальное изучение законов теплового излучения» или «Исследование внешнего фотоэффекта»	ЛР	Работа в ма- лых группах
12.	Лабораторная работа № 7.1 «Изучение спектров излучения газообразных веществ» или «Определение длины волны с помощью спектроскопа»	ЛР	Работа в ма- лых группах

6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности

Типовые задачи для контроля на практических занятиях, защиты лабораторной работы, для экзамена или зачета.

Типовые задачи по разделу 1 «Физические основы механики»

- 1. Материальная точка движется в пространстве согласно уравнениям: X(t) = 5t (m), $Y(t) = 4 2t^2$ (m), $Z(t) = 3t 4t^3$ (m). Найти модули скорости и ускорения точки в момент времени t = 1c.
- 2. Какой угол составляет вектор полного ускорения точки, лежащей на ободе маховика, с радиусом маховика через t = 1.5 c после начала движения? Угловое ускорение маховика $\varepsilon = 0.77 \ pa\partial/c^2$.
- 3. Найти изменение импульса шарика массы $m = 100 \, \varepsilon$ при ударе о землю и количество выделившейся теплоты, если он падает с высоты $h_1 = 200 \, cm$, а после удара поднимается на высоту $h_2 = 180 \, cm$.
- 4. Тонкостенный цилиндр диаметром $D = 30 \, cM$ и массой $m = 12 \, \kappa 2$ вращается согласно

- уравнению $\varphi(t) = A + Bt + Ct^3$, где $A = 4 \ pa\partial$, $B = -2 \ pa\partial/c$, $C = 0.2 \ pa\partial/c^3$. Определить действующий на цилиндр момент сил M в момент времени $t = 3 \ c$.
- 5. Давление воды, текущей по горизонтальной трубе, при изменении площади сечения увеличилось на 350 Па. Определить изменение скорости течения, если начальная скорость составляла 1,5 м/с.

Типовые задачи по разделу 2 «Колебания и волны»

- 1. Физический маятник в виде тонкого стержня длиной $l = 120 \, cm$ колеблется около горизонтальной оси, перпендикулярной стержню, и находящейся на расстоянии a от середины стержня. При каком значении a период колебаний T имеет наименьшее значение? Найти его.
- 2.Определить период колебаний и максимальную скорость движения груза математического маятника, совершающего колебания по закону $x = 0.2 \cdot \sin \left(2\pi t \frac{\pi}{8} \right)$ м.
- 3. Чему равна приведенная длина физического маятника, состоящего из тонкого стержня массой 1 кг длиной 80 см, подвешенного на оси, отстоящей на одну четвертую длины от одного из его концов?
- 4. Определить длину волны частотой 50 Гц, если за 10 с она преодолевает 3 км.

Типовые задачи по разделу 3 «Молекулярная физика и термодинамика»

- 1. Количество вещества гелия v = 1,5 моль, температура T = 120 К. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул этого газа.
- 2. При высокой температуре половина молекул азота диссоциировала на атомы. Чему равна удельная теплоемкость Ср при постоянном давлении в этих условиях? Найти показатель адиабаты.

Типовые задачи по разделу 4 «Электричество»

- 1. Три точечных заряда q, 2q, -q находятся на одной прямой, расстояния между соседними зарядами равно d. Найти напряженность электрического поля в точке на этой же прямой на расстоянии d от отрицательного заряда
- 2.В вершинах треугольника со сторонами по 2,0 см находятся равные заряды по 2,0 нКл. Найти результирующую силу, действующую на четвертый заряд 1,0 нКл, помещенный в середине стороны треугольника.
- 3. Три гальванических элемента $\epsilon_1 = 3.0$ B, $\epsilon_2 = 5.0$ B, $\epsilon_3 = 2.0$ B соединены параллельно и замкнуты на внешнее сопротивление R = 2.0 Ом. Их внутренние сопротивления $r_1 = 1.0$ Ом, $r_2 = 2.0$ Ом и $r_3 = 0.50$ Ом. Найти ток во внешней цепи и напряжения на каждом элементе.

Типовые задачи по разделу 5 «Магнетизм»

- 1. По двум круговым виткам, имеющим общий центр, текут токи силой 5,0 A и 4,0 A. Радиусы витков соответственно равны 4,0 см и 3,0 см. Угол между их плоскостями 30° . Определить индукцию и напряженность в центре витков. Рассмотреть возможные случаи
- 2. Колебательный контур имеет индуктивность L=1,6 м Γ н, ёмкость C=40 н Φ и максимальное напряжение на зажимах U=200 В. Чему равна в нем максимальная сила тока?

Типовые задачи по разделу 6 «Оптика»

- 1. На дифракционную решетку нормально падает монохроматический свет с длиной волны 600 нм. Определите наибольший порядок спектра, полученный с помощью этой решетки, если ее постоянная d=2 мкм.
- 2. Естественный свет проходит через поляризатор и анализатор, поставленные так, что угол между их главными плоскостями ϕ =45 0 . Поляризатор отражает и преломляет 5% падающего на него света. Потерями в анализаторе можн6о пренебречь. Какова интенсивность луча, вышедшего из анализатора, по отношении к интенсивности естественного света?
- 3. Определить, как изменится длина волны де Бройля электрона атома водорода при переходе его с четвертой боровской орбиты на вторую.

Типовые задачи по разделу 7 «Квантовая физика»

- 1. Определите, на сколько изменилась энергия электрона в атоме водорода при излучении атомом фотона с длиной волны 0,486 мкм.
- 2. Энергия связи ядра, состоящего из трех протонов и четырех нейтронов, равна 39,3 МэВ. Определите массу нейтрального атома, обладающего этим ядром.

Типовые задачи по разделу 8 «Ядерная физика»

- 1. Найти период полураспада радиоактивного изотопа, если его активность за 10 суток уменьшилась на 24% по сравнению с первоначальной.
- 2. Определите период полураспада радиоактивного изотопа, если 5/8 начального количества ядер этого изотопа распалось за 849 секунд.

Полный комплект задач содержится в сборнике задач по курсу физики (см. пункт 7.1).

Пример типового варианта контрольной работы для текущего контроля знаний обучающихся

- 1. При горизонтальном полете со скоростью $v=250\,\text{м/c}$ снаряд массой $m=8\,\text{кг}$ разорвался на две части. Большая часть массой $m_1=6\,\text{кг}$ получила скорость $v_1=400\,\text{м/c}$ в направлении полета снаряда. Определить модуль и направление скорости v_2 меньшей части снаряда.
- 2. Определить количество теплоты Q , которое надо сообщить кислороду объемом V=50 л при его изохорном нагревании, чтобы давление газа повысилось на $\Delta p=0,5$ МПа.
- 3. Пылинка массой m=200 мкг, несущая на себе заряд Q=40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U=200~B пылинка имела скорость v=10~m/c. Определить скорость v_0 пылинки до того, как она влетела в поле.
- 4. Электрон движется в однородном магнитном поле с индукцией B=0,1 Тл по окружности. Определите угловую скорость вращения электрона.
- 5. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.

Пример контрольных вопросов при защите лабораторной работы для текущего контроля знаний обучающихся

Вопросы по разделу 1. 1 «Физические основы механики». Тема 1 «Кинематика»

Лабораторная работа № 1.1 «Изучение основного закона динамики вращательного движения с помощью маятника Обербека»

Контрольные вопросы при защите лабораторной работы

- 1. Вращательное движение. Угловое перемещение, угловая скорость и угловое ускорение. Кинематические формулы равномерного и равноускоренного вращения. Связь линейных и угловых характеристик движения.
- 2. Момент инерции материальной точки, системы материальных точек, тела. Теорема Штейнера.
- 3. Момент силы относительно оси вращения. Основной закон динамики вращательного движения.

Перечень вопросов, выносимых на промежуточную аттестацию (экзамен / зачет/ экзамен)
Вопросы к экзамену (2 семестр)

Раздел 1 «Физические основы механики»

- 1. Предмет физики. Методы физического исследования. Роль физики в развитии техники и влияние техники на развитие физики.
- 2. Механическое движение как простейшая форма движения материи. Классическая механика. Пространство и время в классической механике. Физические модели.
- 3. Кинематическое описание движения точки. Скорость и ускорение при криволинейном движении. Нормальное и касательное (тангенциальное) ускорения.
- 4. Движение точки по окружности. Векторы угловой скорости и углового ускорения. Связь линейных скоростей и ускорений с угловыми скоростями и ускорениями.
- 5. Динамика. Механическая система. Сила. Масса и импульс. Современная трактовка законов Ньютона. Силы в механике.
- 6. Импульс системы материальных точек. Закон сохранения импульса.
- 7. Обобщенная формулировка II закона Ньютона. Закон всемирного тяготения. Центр масс механической системы, закон движения центра масс. Движение тел с переменной массой.
- 8. Энергия как универсальная мера различных форм движения и взаимодействия. Работа силы. Консервативные и неконсервативные силы. Мощность.
- 9. Кинетическая энергия механической системы. Потенциальная энергия.
- 10. Закон сохранения энергии в механике. Удары.
- 11. Момент инерции. Теорема Штейнера.
- 12. Момент силы. Основное уравнение динамики вращательного движения твердого тела.
- 13. Кинетическая энергия вращающегося и катящегося твердого тела. Работа при вращательном движении.
- 14. Момент импульса материальной точки, механической системы и тела. Закон сохранения момента импульса.
- 15. Основное уравнение динамики вращательного движения твердого тела в обобщенном виде. Закон сохранения момента импульса.
- 16. Деформация в твердом теле. Закон Гука. Коэффициент Пуассона. Диаграмма растяжения.
- 17. Гидростатика несжимаемой жидкости. Давление столба жидкости. Сила Архимеда. Условия плавания тел.
- 18. Стационарное течение идеальной жидкости. Уравнение неразрывности. Уравнение Бернулли.
- 19. Вязкость жидкости. Режимы течения. Число Рейнольдса. Методы определения вязкости.

Раздел 2 «Колебания и волны»

- 20. Классификация колебаний. Уравнение гармонических колебаний. Механические колебания. Энергия колебаний. Дифференциальное уравнение гармонических колебаний.
- 21. Маятники.
- 22. Свободные затухающие колебания.
- 23. Вынужденные колебания. Резонанс.
- 24. Волновое движение. Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны.

Раздел 3 «Молекулярная физика и термодинамика»

- 25. Статистический и термодинамический методы исследования. Основное уравнение молекулярно-кинетической теории идеальных газов. Температурная шкала Цельсия и Кельвина.
- 26. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- 27. Распределение Максвелла молекул идеального газа.
- 28. Распределение Больцмана и барометрическая формула. Среднее число столкновений и средняя длина свободного пробега.
- 29. Термодинамические параметры. Термодинамическое равновесие и процесс. Уравнение состояния идеального газа. Изопроцессы.
- 30. Первое начало термодинамики. Работа газа. Теплообмен, количество теплоты. Внутренняя энергия идеального газа. Число степеней свободы.

- 31. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс.
- 32. Теплоемкость. Уравнение Майера. Коэффициент Пуассона. Политропный процесс.
- 33. Циклы. Термический КПД цикла. Тепловые двигатели, холодильные машины. Теорема Карно. Цикл Карно и его к.п.д. Второе начало термодинамики.
- 34. Обратимые и необратимые процессы. Энтропия. Неравенство Клаузиуса. Определение энтропии равновесной системы через термодинамическую вероятность макросистемы. Теорема Нернста-Планка.
- 35. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы.
- 36. Явление переноса. Диффузия, теплопроводность, внутреннее трение.

Вопросы к зачету (3 семестр)

Раздел 4 «Электричество»

- 37. Электрические заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона.
- 38. Электростатическое поле, его характеристики. Эквипотенциальные поверхности и силовые линии электростатического поля. Принцип суперпозиции полей.
- 39. Поток вектора напряженности электростатического поля. Теорема Гаусса (для вакуума).
- 40. Потенциальный характер электростатического поля. Понятие потенциала. Расчет работы при перемещении заряда в электростатическом поле. Циркуляция вектора Е электростатического поля.
- 41. Определение разности потенциалов в электростатическом поле. Связь напряженности и потенциала. Градиент потенциала.
- 42. Проводники в электростатическом поле. Равновесие зарядов в проводнике. Ёмкость проводников.
- 43. Емкость конденсаторов. Соединения конденсаторов. Энергия заряженного конденсатора.
- 44. Энергия электростатического поля. Объемная плотность энергии поля.
- 45. Типы диэлектриков. Поляризация диэлектриков и ее виды. Поляризованность диэлектриков. Диэлектрическая восприимчивость и проницаемость. Вектор электрического смещения.
- 46. Свободные и связанные заряды. Теорема Гаусса для поля в диэлектрике. Сегнетоэлектрики. Электрическое поле в однородном диэлектрике.
- 47. Постоянный электрический ток, условия его существования и основные характеристики. Сторонние силы. Понятие ЭДС и напряжения.
- 48. Сопротивление проволочного проводника. Соединения проводников. Температурная зависимость сопротивления и ее качественное объяснение. Сверхпроводимость.
- 49. Закон Ома в интегральной форме для однородного и неоднородного участков цепи, для полной цепи.
- 50. Правила Кирхгофа.
- 51. Закон Джоуля Ленца в интегральной форме. Мощность тока.
- 52. Закон Ома и Джоуля Ленца в дифференциальной форме.
- 53. Электрический ток в металлах. Классическая теория электропроводности. Ток в вакууме. Эмиссия электронов. Газовые разряды.
- 54. Полупроводники. Зонная теория твердого тела. Собственная и примесная проводимость полупроводников. Диод.

Раздел 5 «Магнетизм»

- 55. Магнитное поле и его характеристики. Макро- и микротоки. Воздействие магнитного поля на рамку с током и на прямолинейный проводник с током.
- 56. Силовые линии магнитной индукции. Силовая картина магнитного поля прямолинейного проводника с током и кругового витка. Принцип суперпозиции магнитных полей.
- 57. Закон Био Савара Лапласа.
- 58. Воздействие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряда в

- магнитном поле. Эффект Холла.
- 59. Вихревой характер магнитного поля. Теорема Гаусса и теорема о циркуляции вектора магнитной индукции (в вакууме).
- 60. Намагничивание магнетиков. Напряженность магнитного поля. Магнитная проницаемость и магнитная восприимчивость.
- 61. Диамагнетики, парамагнетики и ферромагнетики.
- 62. Связь векторов В и Н. Закон полного тока для магнитного поля в веществе. Теорема о циркуляции вектора Н.
- 63. Электромагнитная индукция. ЭДС индукции в подвижных и неподвижных проводниках. Вращение рамки в магнитном поле. Токи Фуко.
- 64. Самоиндукция. Индуктивность проводника. Закон Ленца. Взаимная индукция. Трансформаторы.
- 65. Работа по перемещению проводника с током в магнитном поле. Энергия магнитного поля в соленоиде. Плотность энергии магнитного поля.
- 66. Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла в интегральной форме.
- 67. Колебательный контур. Преобразование энергии на различных этапах колебания. Дифференциальные уравнения свободных незатухающих и затухающих колебаний в нем и их решения.
- 68. Дифференциальное уравнение электромагнитной волны и его решение. Скорость распространения волны. Вектор Умова-Пойтинга. Энергетические характеристики электромагнитных волн. Шкала электромагнитных волн.

Вопросы к экзамену (4 семестр)

.**Раздел 6** «Оптика»

- 69. Оптика. Законы геометрической оптики. Полное внутреннее отражение. Линзы.
- 70. Интерференция света. Условия возникновения интерференции. Метод векторной диаграммы для сложения двух или нескольких волн.
- 71. Принцип получения интерфереционной картины. Условия максимумов и минимумов. Разность фаз и разность хода.
- 72. Интерференция в тонкой пленке. Кольца Ньютона.
- 73. Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля.
- 74. Дифракция на круглом отверстии. Дифракция на длинной щели.
- 75. Дифракционная решетка. Главные максимумы. Главные минимумы. Разрешающая способность.
- 76. Поляризованный свет. Виды поляризации. Способы получения поляризованного света.
- 77. Прохождение естественного света через поляризатор и анализатор. Поворот плоскости поляризации.
- 78. Поляризация света при отражении и преломлении на границе диэлектриков. Закон Брюстера. Двойное лучепреломление.
- 79. Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона. Внешний фотоэффект.
- 80. Световое давление. Опыты Лебедева. Эффект Комптона.
- 81. Тепловое излучение. Закон Кирхгофа. Абсолютно черное тело. Закон Стефана-Больцмана. Закон Вина.
- 82. Тепловое излучение. Формула Планка. Распределение энергии в спектре излучения по частоте и длине волны.

Раздел 7 «Квантовая физика»

- 83. Модель атома Томсона и Резерфорда-Бора. Опыты Резерфорда по рассеянию альфачастиц. Эмпирические закономерности в атомных спектрах. Теория Бора.
- 84. Уровни энергии атома водорода. Квантовые числа: главное, орбитальное, магнитное.
- 85. Волновые свойства микрочастиц. Длина волны де Бройля и ее свойства. Волновая функция.

86. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера.

Раздел 8 «Ядерная физика»

- 87. Состав атомного ядра. Характеристики ядра. Ядерные силы. Энергия связи ядра. Дефект масс. Энергетический эффект ядерной реакции.
- 88. Радиоактивное излучение и его виды. Закон радиоактивного распада. Ядерные реакции. Деление ядер. Синтез ядер. Понятие о дозиметрии и защите.
- 89. Основные классы элементарных частиц.

6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Критерии оценки решения задачи для контроля на практических занятиях, при защите лабораторной работы, на контрольной работе, на экзамене или зачете:

- 5 баллов выставляется студенту, если в логически выстроенном решении правильно указаны формулы всех необходимых физических законов с пояснениями, сделаны все необходимые математические преобразования, рисунки (при необходимости), получен правильный ответ;
- 4 балла выставляется студенту, если в ответе указаны все необходимые физические законы с пояснениями, приведены рисунки (при необходимости), но в пояснениях к физическим законам или в рисунке содержатся неточности, или допущена математические ошибка при решении;
- 3 балла выставляется студенту, если в ответе указаны только необходимые физические законы или рисунки (при необходимости), или в законах и рисунке допущены ошибки;
- 2 балла решение не содержит основной понятийный аппарат по теме задачи.

Для допуска к экзамену или зачету студент обязан решить итоговую контрольную работу на оценку «зачет».

Итоговая оценка по контрольной работе **«зачет»** или **«незачет»** определяется по среднему баллу по всем задачам варианта контрольной работы:

- 0 2,4 балла «незачет»;
- 2,5 5 баллов «зачет».

Критерии оценки вопросов для защиты лабораторных работ:

- «зачет» выставляется студенту, если в ответе на вопрос правильно указаны все необходимые физические законы и определения с пояснениями, правильно описаны явления или в ответе содержатся незначительные неточности;
- «незачет» ответ не содержит основной понятийный аппарат по теме вопроса

Для допуска к экзамену или зачету студент обязан защитить все выполненные лабораторные работы на оценку «зачет».

Итоговая оценка по защите лабораторной работы «зачет» или «незачет» определяется по среднему баллу решения 3-x задач по теме работы: 2,5-5 баллов — «зачет»; 0-2,4 балла — «незачет» и ответам с оценкой «зачет» на вопросы для защиты лабораторной работы. Итоговая оценка по защите лабора-

торной работы «зачет» соответствует решению задач и ответу на вопросы для защиты лабораторной работы с оценками «зачет».

Для выполнения и защиты лабораторных работ студенты разбиваются на малые группы по 4 - 6 человек. Каждая группа выполняет на занятии индивидуальную лабораторную работу. При защите лабораторной работы малой группой ответы каждого студента оцениваются по критериям индивидуально.

Критерии оценки вопросов к экзамену и зачету:

- 5 баллов выставляется студенту, если в логически выстроенном ответе на вопрос правильно указаны все необходимые физические законы и определения с пояснениями, правильно описаны явления, представлен вывод основных формул в соответствии с изложенным лекционным материалом;
- 4 балла выставляется студенту, если в ответе указаны все необходимые физические законы и определения с пояснениями, описаны явления, но в пояснениях к физическим законам и определениям содержатся неточности и (или) явления описаны с ошибкой и (или) не представлен вывод основных формул в соответствии с изложенным лекционным материалом;
- 3 балла выставляется студенту, если в ответе указаны только необходимые физические законы, определения без пояснений (или в пояснениях содержатся ошибки) и (или) при описании явления допущены ошибки (или описание отсутствует);
- 2 балла ответ не содержит основной понятийный аппарат по теме вопроса.

Для оценки знаний, умений, навыков и формирования компетенции по дисциплине применяется **традиционна**я система контроля и оценки успеваемости студентов. При использовании традиционной системы контроля и оценки успеваемости студентов критерии выставления оценок по четырех балльной системе «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» либо «зачтено», «не зачтено».

На экзамене студент отвечает на два теоретических вопроса, включенных в билет, и решает одну задачу. Билет и задачу студент выбирает случайно из комплекта предлагаемых ему соответствующих материалов. Итоговая оценка по экзамену выставляется по средней арифметической оценке ответов на теоретические вопросы и решения задачи:

Критерии оценивания результатов обучения для сдачи экзамена

Таблица 7

Оценка	Критерии оценивания
Отлично	средняя арифметическая оценка по ответу на два тео-
	ретических вопроса и решению задачи из билета - от
	4,5 до 5 баллов; компетенции, закреплённые за дисци-
	плиной, сформированы на уровне – высокий;
Хорошо	средняя арифметическая оценка по ответу на два тео-

	ретических вопроса и решению задачи из билета - от 3,5 до 4,4 баллов; компетенции, закреплённые за дисциплиной, сформированы на уровне – хороший (средний)
Удовлетворительно	средняя арифметическая оценка по ответу на два теоретических вопроса и решению задачи из билета - от 2,5 до 3,4 баллов; компетенции, закреплённые за дисциплиной, сформированы на уровне – достаточный
Неудовлетворительно	средняя арифметическая оценка по ответу на два теоретических вопроса и решению задачи из билета - от 0 до 2,4 баллов; компетенции, закреплённые за дисциплиной, не сформированы

На зачете студент отвечает на один теоретический вопрос и решает одну задачу. Вопрос и задачу студент выбирает случайно из комплекта предлагаемых ему соответствующих материалов. Итоговая оценка по зачету «зачтено» или «не зачтено» выставляется по средней арифметической оценке ответов на теоретический вопрос и решения задачи:

Критерии оценивания результатов обучения для получения зачета.

Таблица 8

Оценка	Критерии оценивания
«зачтено»	средняя арифметическая оценка по ответу на теоретический вопрос и решению задачи - от 2,5 до 5,0 баллов; компетенции, закреплённые за дисциплиной, сформированы на уровне – достаточный и выше
«не зачтено»	средняя арифметическая оценка по ответу на теоретический вопрос и решению задачи - от 0,0 до 2,4 баллов; компетенции, закреплённые за дисциплиной, не сформированы

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Основная литература

- 1.Трофимова Т.И. Курс физики: учебн. пособие для студ. учреждений высш. образования / Т.И. Трофимова. 23-е изд., стер. М.: Издательский центр «Академия», 2017. 560 с.
- 2.Трофимова Т.И. Сборник задач по курсу физики. Учебное пос. / Т.И. Трофимова. 3-е изд. М.: ООО "Издательский дом "Оникс 21 век", 2003. 384 с.

7.2 Дополнительная литература

1. Савельев, И.В. Курс физики: учебное пособие для вузов: в 3 томах / И.В. Савельев. — 8-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Том 1:

- Механика. Молекулярная физика 2021. 356 с. ISBN 978-5-8114-6796-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152453.
- 2.Савельев, И.В. Курс физики: учебное пособие: в 3 томах / И.В. Савельев. 6-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 2: Электричество. Колебания и волны. Волновая оптика 2019. 468 с. ISBN 978-5-8114-4253-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/117715.
- 3.Хусаинов, Ш.Г. Курс физики: теория, задачи и вопросы: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2021 464 с. Режим доступа: http://elib.timacad.ru/dl/local/s20210609.pdf.
- 4.Коноплин, Н.А. Физика. Материалы контрольной работы для студентов аграрных направлений подготовки. / Н.А. Коноплин, И.В. Левкин, В.Л. Прищеп; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2021 154 с. Режим доступа: http://elib.timacad.ru/dl/local/s20210715.pdf.
- 5.Хусаинов, Ш.Г. Основы механики и молекулярная физика: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2020 146 с. Режим доступа: http://elib.timacad.ru/dl/local/umo456.pdf.
- 6.Хусаинов, Ш.Г. Электромагнетизм и волны: учебное пособие / Ш.Г. Хусаинов; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2020 168 с. Режим доступа: http://elib.timacad.ru/dl/local/umo457.pdf.
- 7. Коноплин, Н.А. Физика. Материалы для решения контрольной работы. Часть 1: учебно-методическое пособие / Н. А. Коноплин; Российский государственный аграрный университет МСХА имени К. А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2018 215 с. Режим доступа: http://elib.timacad.ru/dl/local/umo315.pdf.
- 8.Коноплин, Н.А. Физика. Материалы для решения контрольной работы. Часть 2: учебно-методическое пособие / Н.А. Коноплин; Российский государственный аграрный университет МСХА имени К. А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2020 183 с. Режим доступа: http://elib.timacad.ru/dl/local/umo449.pdf.
- 9. Коноплин, Н. А. Физика. Материалы контрольной работы с цифровыми компетенциями для направлений подготовки сферы IT аграрных вузов: Учебно-методическое пособие / Н. А. Коноплин, К. А. Горшков. Москва: Российский государственный аграрный университет МСХА им. К.А.

Тимирязева, 2022. – 168 с. — Режим доступа: http://elib.timacad.ru/dl/full/s08122022FizikaKonoplin.pdf.

10.Хусаинов, Ш. Г. Лекции по физике. Часть III. Оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / Ш. Г. Хусаинов. — Москва: Российский государственный аграрный университет - МСХА им. К.А. Тимирязева, 2023. — 305 с. — Режим доступа: http://elib.timacad.ru/dl/full/s04072023fizika3.pdf.

7.3 Нормативные правовые акты

Не предусмотрено.

7.4 Методические указания, рекомендации и другие материалы к занятиям

Для проведения лабораторных работ рекомендуется использовать методические указания:

- 1.Механика: методические указания / В.Л. Прищеп [и др.]; Российский государственный аграрный университет МСХА имени К.А. Тимирязева (Москва). Электрон. текстовые дан. Москва: РГАУ-МСХА им. К.А. Тимирязева, 2018 61 с. Режим доступа: http://elib.timacad.ru/dl/local/umo214.pdf.
- 2.Коноплин, Н. А. Погрешности физических измерений / Н. А. Коноплин, С. А. Маринова, М. В. Шестаков. Москва: Российский государственный аграрный университет МСХА им. К.А. Тимирязева, 2022. 35 с. Режим доступа: http://elib.timacad.ru/dl/full/s08122022konoplin.pdf.
- 3.Башлачев В. А., Быстров Г. С., Дмитриев Г. В., Ершов А. П. Механика часть І: методические указания по выполнению лабораторных работ. М.: ФГБОУ ВПО МГАУ, 2013. 44c.
- 4.Башлачев В. А., Быстров Г. С., Дмитриев Г. В., Ершов А. П., Туркин А. В. Механика. Методические указания по выполнению лабораторных работ. Ч. II / Под общей ред. А. В. Туркина. М.: ФГБОУ ВПО МГАУ, 2013. 48 с.
- 5.Быстров Г. С., Ершов А. П., Храмшина Э. В. Электричество. Методические указания к лабораторным работам. Ч. І. М.: ВНИИГиМ имени А.Н.Костякова, 2016. 48 с.
- 6.Быстров Г. С., Николаев С.Н., Храмшина Э. В. Электромагнетизм. Методические указания к лабораторным работам по физике. Ч. ІІ. М.: ВНИ-ИГиМ имени А.Н.Костякова, 2016.-60 с.
- 7. Башлачев В. А., Быстров Г. С., Дмитриев Г. В., Ершов А. П., Туркин А. В., Челноков Б. И. Оптика и атомная физика. Методические указания по выполнению лабораторных работ. Ч. II / Под общей ред. А. В. Туркина, Г. В. Дмитриева. М.: ФГБОУ ВПО МГАУ, 2013. 50 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Не предусмотрено

9. Перечень программного обеспечения и информационных справочных систем

Таблица 9

Перечень программного обеспечения

Не предусмотрено

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 10 Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

Наименование специальных помещений и помещений для самостоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и помещений для самостоятельной работы
1	2
Учебная лаборатория,	1.Стол 21 шт.
аудитория для проведе-	2.Стулья 39 шт.
ния групповых и индиви-	3.Доска меловая 1 шт.
дуальных консультаций,	4.Шкафы 2 шт.
текущего контроля и	5.Типовой комплект оборудования лаборатории «Молекулярная
промежуточной атте-	физика и термодинамика» 1 шт. (инв.№410124000603107)
стации	6.Типовой комплект оборудования лаборатории «Физические ос-
(Учебный корпус № 28	новы механики» 1 шт. (инв. №410124000603116)
ауд. 301а)	
Учебная аудитория для	1.Парты 23 шт.
проведения занятий се-	2. Стулья 1шт.
минарского типа, груп-	3. Стол 1 шт.
повых и индивидуальных	4. Доска меловая 1шт.
консультаций, текущего	5.Шкафы 1 шт.
контроля и промежу-	
точной аттестации	
(Учебный корпус № 28	
ауд. 301б)	
Учебная лаборатория,	1. Столы 20 шт.
аудитория для проведе-	2. Стулья 29 шт.
ния групповых и индиви-	3. Доска меловая 1 шт.
дуальных консультаций,	4. Шкафы 1 шт.
текущего контроля и	5. Типовой комплект оборудования лаборатории «Волновые
промежуточной атте-	процессы» 1 шт. (инв.№ 410124000603118)

стации	6. Типовой комплект оборудования лаборатории «Электри-
(Учебный корпус № 28 ауд. 302)	чество и магнетизм» 1 шт. (инв.№ 410124000603235)
Учебная аудитория для	1.Стол 1 шт.
проведения занятий лек-	2.Парты 70 шт.
ционного типа	3. Стулья 1шт.
(Учебный корпус № 28	4.Доска меловая 1 шт.
ауд. 304)	5.Кафедра 1 шт.
ay 2, 2 0 1)	6.Экран 1 шт.
	7.Проектор 1 шт.
Учебная лаборатория,	1.Парты 17 шт.
аудитория для проведе-	2.Стулья 35 шт.
ния групповых и индиви-	3.Доска меловая 1 шт.
дуальных консультаций,	4.Шкафы 1 шт.
текущего контроля и	5.Типовой комплект оборудования лаборатории «Квантовая фи-
промежуточной атте-	зика» 1 шт. (инв.№ 410124000603114)
стации	6.Установка для экспер. изуч. законов тепл.изл. 1 шт. (инв.№
(Учебный корпус № 28	410134000000313)
ауд. 337)	
Учебная лаборатория,	1.Парты 20 шт.
аудитория для проведе-	2.Стулья 34 шт.
ния групповых и индиви-	3.Доска меловая 1 шт.
дуальных консультаций,	4.Шкафы 1 шт.
текущего контроля и	5. Типовой комплект оборудования для лаборатории «Квантовая
промежуточной атте-	физика» 1 шт. (инв. № 410124000603113)
стации	
(Учебный корпус № 28	
ауд. 336)	1 17 16
Учебная лаборатория,	1.Парты 16 шт.
аудитория для проведения групповых и индиви-	2.Стулья 34 шт. 3.Доска меловая 1 шт.
1.0	3.Доска меловая 1 шт. 4.Шкафы 1 шт.
дуальных консультаций, текущего контроля и	4. Пкафы 1 m1. 5. Типовой комплект оборудования лаборатории «Волновые про-
промежуточной атте-	цессы» 1 шт. (инв.№ 410124000603117)
стации	6.Типовой комплект оборудования лаборатории «Электричество
(Учебный корпус № 28	и магнетизм» 1 шт. (инв.№ 410124000603236)
ауд. 335)	
Учебная лаборатория,	1.Столы 9 шт.
аудитория для проведе-	2.Стулья 21 шт.
ния групповых и индиви-	3. Типовой комплект оборудования лаборатории «Физические ос-
дуальных консультаций,	новы механики» 1 шт. (инв. №410124000603115)
текущего контроля и	
промежуточной атте-	
стации	
(Учебный корпус № 28	
ауд. 332)	
Учебная лаборатория,	1.Стол 11 шт.
аудитория для проведе-	2.Стулья 21 шт.
ния групповых и индиви-	3.Типовой комплект оборудования лаборатории «Физические ос-
дуальных консультаций,	новы механики» 1 шт. (инв. №410124000603115)
текущего контроля и	4.Типовой комплект оборудования лаборатории «Молекулярная
промежуточной атте-	физика и термодинамика» 1 шт. (инв.№ 410124000603106)
стации	

(Учебный корпус № 28	
ауд. 333)	
Учебная аудитория для	1.Столы 18 шт.
проведения занятий се-	2.Стол для преподавателя 1 шт.
минарского типа, ауди-	3.Стулья 55 шт.
тория для проведения	4.Доска меловая 2 шт.
групповых и индивиду-	5.Шкафы 3 шт.
альных консультаций,	
текущего контроля и	
промежуточной атте-	
стации	
(Учебный корпус № 28	
ауд. 306а)	
Учебная лаборатория,	1.Парты 27 шт.
аудитория для проведе-	2.Стулья 57 шт.
ния групповых и индиви-	3.Доска меловая 1 шт.
дуальных консультаций,	4.Шкафы 3 шт.
текущего контроля и	5.Типовой комплект оборудования лаборатории «Электричество и
промежуточной атте-	магнетизм» 1 шт. (инв.№ 410124000603236)
стации	6.Типовой комплект оборудования лаборатории «Молекулярная
(Учебный корпус № 28	физика и термодинамика» 1 шт. (инв.№ 410124000603106)
ауд. 306б)	7.Типовой комплект оборудования лаборатории «Физические
	основы механики» 1 шт. (инв. № 410124000603115)
Учебная аудитория для	1. Лабораторные столы 15 шт.
проведения занятий се-	2.Стол для преподавателя 1 шт.
минарского типа, <i>ауди</i> -	3.Стулья 47 шт.
тория для проведения	4.Доска меловая 1 шт.
групповых и индивиду-	5. Шкафы 1 шт.
альных консультаций,	
текущего контроля и	
промежуточной атте-	
стации	
(Учебный корпус № 28	
ауд. 307)	
Центральная научная	Читальные залы библиотеки
библиотека имени Н.И.	
Железнова, читальные	
залы библиотеки	
Общежитие. Комната	Комнаты для самопроверки
для самоподготовки	

11. Методические рекомендации обучающимся по освоению дисциплины

Образовательный процесс по дисциплине организован в форме учебных занятий обучающихся с преподавателем и самостоятельной работы обучающихся. Учебные занятия представлены следующими видами: лекции; лабораторные работы, практические занятия, консультации.

На учебных занятиях обучающиеся выполняют запланированные настоящей программой отдельные виды учебных работ, в том числе отдельных эле-

ментов работ, связанных с будущей профессиональной деятельностью.

После каждой лекции требуется самостоятельная проработка изложенного материала. Перед занятием по выполнению лабораторной работы необходимо подготовить конспект работы, внимательно изучив содержание методических указаний, и запомнить порядок выполнения.

Виды и формы отработки пропущенных занятий

Студент, пропустивший <u>лекцию</u>, должен отработать теоретический материал по соответствующей теме самостоятельно.

Студент, пропустивший <u>практическое занятие</u>, должен получить у преподавателя дополнительные задачи по соответствующей теме, решить их и сдать преподавателю.

Студент, пропустивший <u>лабораторно-практическую работу</u>, обязан ее отработать (выполнить), рассчитать и защитить.

12. Методические рекомендации преподавателям по организации обучения по дисциплине

Для более успешного освоения дисциплины «Физика» рекомендуется сначала давать студентам лекционный материал, а затем закреплять его виде практических и лабораторных занятий.

Изучение курса складывается из лекций, практических занятий, лабораторных занятий и самостоятельной работы студентов.

На лекциях освещаются основополагающие вопросы программы. Часть разделов выносится на самостоятельную проработку.

Практические занятия предусматривают развитие у студентов навыков количественного анализа физических процессов, составляющих суть программы. Формируются приемы рассмотрения конкретных вопросов с позиции фундаментальных законов науки.

Лабораторные работы наглядно демонстрируют физические законы и явления.

Программу разработал:

Коноплин Н.А., к.ф.-м.н., доцент

РЕЦЕНЗИЯ

на рабочую программу дисциплины Б1.О.07 «Физика»

ОПОП ВО по направлению 35.03.06 «Агроинженерия» направленности «Электрооборудование и электротехнологии»; «Автоматизация и роботизация технологических процессов» (квалификация выпускника – бакалавр)

Понизовкиным Дмитрием Андреевичем, доцентом кафедры техносферной безопасности ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева», кандидатом технических наук (далее по тексту рецензент), проведена рецензия рабочей программы дисциплины «Физика» ОПОП ВО по направлению 35.03.06 «Агроинженерия» направленности «Электрооборудование и электротехнологии»; «Автоматизация и роботизация технологических процессов» (бакалавриат) разработанной в ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева», на кафедре физики (разработчик – Коноплин Николай Александрович, доцент кафедры физики, кандидат физико-математических наук).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

- 1. Предъявленная рабочая программа дисциплины «Физика» (далее по тексту Программа) <u>соответствует</u> требованиям ФГОС ВО по направлению 35.03.06 «Агроинженерия». Программа <u>содержит</u> все основные разделы, <u>соответствует</u> требованиям к нормативно-методическим документам.
- 2. Представленная в Программе *актуальность* учебной дисциплины в рамках реализации ОПОП ВО *не подлежит сомнению* дисциплина относится к базовой части учебного цикла Б1.
- 3. Представленные в Программе *цели* дисциплины *соответствуют* требованиям ФГОС ВО направления 13.03.01 «Теплоэнергетика и теплотехника».
- 4. В соответствии с Программой за дисциплиной «Физика» закреплена 1 компетенция (1 индикатор сформированности компетенции). Дисциплина «Физика» и представленная Программа способна реализовать их в объявленных требованиях. Результаты обучения, представленные в Программе в категориях знать, уметь, владеть соответствуют специфике и содержанию дисциплины и демонстрируют возможность получения заявленных результатов.
- 5. Общая трудоёмкость дисциплины «Физика» составляет 8 зачётных единиц (288 часов / из них практическая подготовка 0 часов).
- 6. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин <u>соответствует</u> действительности. Дисциплина «Физика» взаимосвязана с другими дисциплинами ОПОП ВО и Учебного плана по направлению 35.03.06 «Агроинженерия» и возможность дублирования в содержании отсутствует.
- 7. Представленная Программа предполагает использование современных образовательных технологий, используемые при реализации различных видов учебной работы. Формы образовательных технологий *соответствуют* специфике дисциплины.
- 8. Программа дисциплины «Физика» предполагает 12 занятий в интерактивной форме.
- 9. Виды, содержание и трудоёмкость самостоятельной работы студентов, представленные в Программе, *соответствуют* требованиям к подготовке выпускников, содержащимся во ФГОС ВО направления 35.03.06 «Агроинженерия».
- 10. Представленные и описанные в Программе формы *текущей* оценки знаний (защита лабораторных работ, решение задач, решение контрольной работы), *соответствуют* специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний студентов, предусмотренная Программой, осуществляется в форме экзаменов и зачета, что <u>соответствует</u> статусу дисциплины, как дисциплины базовой части учебного цикла — Б1 ФГОС ВО направления 35.03.06 «Агроинженерия».

- 11. Формы оценки знаний, представленные в Программе, <u>соответствуют</u> специфике дисциплины и требованиям к выпускникам.
- 12. Учебно-методическое обеспечение дисциплины представлено: основной литературой 2 источника (базовый учебник и сборник задач), дополнительной литературой 10 наименований и $\underline{coombemcmbyem}$ требованиям ФГОС ВО направления 35.03.06 «Агроинженерия».
- 13. Материально-техническое обеспечение дисциплины соответствует специфике дисциплины «Физика» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.
- 14. Методические рекомендации студентам и методические рекомендации преподавателям по организации обучения по дисциплине дают представление о специфике обучения по дисциплине «Физика».

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины «Физика» ОПОП ВО по направлению 35.03.06 «Агроинженерия», направленности «Электрооборудование и электротехнологии»; «Автоматизация и роботизация технологических процессов» (квалификация выпускника – бакалавр), разработанная Коноплиным Николаем Александровичем, доцентом кафедры физики, кандидатом физико-математических наук, соответствует требованиям ФГОС ВО, современным требованиям экономики, рынка труда и позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Рецензент: Понизовкин Дмитрий Андреевич, доцент кафедры техносферной безопасности ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени

К.А. Тимирязева», кандидат технических наук