И.о. директора пиститута мелиорации водняго хозяйства и строплотренва имени А.Н. Костякова Д.М. Бенин 2020 г.

Лист актуализации рабочей программы дисциплины Б1.Б.15 «Теплофизика»

для подготовки бакалавров	
Направление: 20.03.01 Техносферная безопасно	ость
Направленности: Инжеперная защита окружаю	нцей среды, Зацитта в презвычайны:
ситуациях.	
Форма обучения очная	
Год начала подготовки: 2017	
Kype 2	
Семестр 4	

В рабочую программу не вносятся изменения. Программа актуализирована для 2020 года начала подготовки.

Разработчик: В.Л. Прищен. к.ф.-м.н., доцент (био, ученая степень, сченое выше) $\frac{8}{8}$ (18» 06 2020 г. Рабочая программа переемотрена и одобрена на заседании кафедры физики протокод № 7 от «18» 06 2020 г.

Заведующий кафедрой физики Н.А. Коноплин, к.ф.-м.н., доцент (ФПО, ученая сченень, учение знание)

«18» 06 2020 г.

Лист актуализации принят на хранение:

Заведующий выпускающей кафедрой организации и технологии строительства объектов природообустройства Сметанин В.И., д.т.н., профессор (ФИО, ученяя стенень, ученое знаиме)

Заведующий выпускающей кафедрой защиты в чрезвычайных ситуациях Борулько В.Г., к.т.н., доцент (ФЙо, ученая степень, ученое выше) Ceeee

«18» 06 20201.

Методический отдел УМУ: « » 20 г.

1865 Physical Physica

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – МСХА имени К.А. ТИМИРЯЗЕВА»

(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Институт мелиорации, водного хозяйства и строительства имени А.Н. Костякова Кафедра физики

УТВЕРЖДАЮ:

И.о. директора института мелиорации, водного хозяйства и строительства имени А.Н. Костякова

Ю.Г. Иванов 201*9* г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.Б.15 ТЕПЛОФИЗИКА

для подготовки бакалавров

ΦΓΟС ΒΟ

Направление: 20.03.01 Техносферная безопасность

Направленности: Инженерная защита окружающей среды, Защита в чрезвычайных ситуациях, Безопасность технологических процессов и производств

Курс 2 Семестр 4

Форма обучения - очная

Год начала подготовки - 2017

юмер

Москва, 2018

Разработчик : В.Л.Прищеп, к.фм.н., дог	цент	Dy		
(ФИО, ученая степень, ученое звание) $\langle\langle 2 \rangle\rangle$	12	201 <u>8</u> г.		
Рецензент: Карнаухов В.М., к.фм.н., до	цент	M78		NAMES AND ADDRESS.
•		« <u>20</u> »	12	_201 <u>&</u> r.
Программа составлена в соответствии с нию подготовки 20.03.01 «Техносферная года начала подготовки				
Программа обсуждена на заседании кафе протокол № 12 от «20»122018 г.	едры физи	ки		
Зав. кафедрой Коноплин Н.А., к.фм.н.,	доцент		The	1
		« 20»	12	201 β Γ.
Согласовано: Председатель учебно-методической комиссии института Бакштанин А.М., к.т.	г.н., доцен	т	le	1
Про	STOKEN N6	«21»_	01	_ 201 <u>\$</u> r.
Заведующий выпускающей кафедрой: В.И. Сметанин, д.т.н., профессор	le	un	2	
Заведующий выпускающей кафедрой А.Л. Бирюков, д.т.н., профессор	1/2	/ « <u>14</u> »_	01	_ 2015r.
		<	< <u>/4</u> » _	<i>01</i> 201 <u>9</u> г.
Заведующий выпускающей кафедрой Г.Н.Смирнов, к.т.н., доцент		a	1	
		T/	<u> </u>	<i>01</i> 201 <u>\$</u> г.
Зав. отдела комплектования ЦНБ	_ 14	(подпись)	-	
Бумажный экземпляр РПД, копии эле ных материалов дисциплины получени Методический отдел УМУ		к вариант	гов РП	Д и оценоч-
-			« <u></u> » _	201_Γ

СОДЕРЖАНИЕ

АННОТАЦИЯ	4
1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	5
2. МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ	5
3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕО С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	
4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	7
4.1 РАСПРЕДЕЛЕНИЕ ТРУДОЁМКОСТИ ДИСЦИПЛИНЫ ПО ВИДАМ РАБОТ	7 9
5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	12
6. ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТО ОСВОЕНИЯ ДИСЦИПЛИНЫ	
6.1 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, ум навыков и (или) опыта деятельности	12
7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	16
7.1 ОСНОВНАЯ ЛИТЕРАТУРА	16 17
8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	17
9. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ (ПРИ НЕОБХОДИМОСТИ)	
10. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	17
11. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	18
Виды и формы отработки пропущенных занятий	18
12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧЕН ЛИСПИПЛИНЕ	

Аннотация

рабочей программы учебной дисциплины «ТЕПЛОФИЗИКА» для подготовки бакалавров по направлению 20.03.01 «Техносферная безопасность» направленностям «Инженерная защита окружающей среды», «Защита в чрезвычайных ситуациях», «Безопасность технологических процессов и производств».

Цель освоения дисциплины:

- 1) получение студентами теоретических и практических знаний и приобретение умений и навыков в области термодинамики и теплопередачи с учетом современных тенденций развития техники и технологий;
- 2) формирование умения создавать физические модели происходящего и устанавливать связь между явлениями;
- 3) формирование способности применять на практике навыки проведения и описания исследований, в том числе экспериментальных.

Место дисциплины в учебном плане: дисциплина включена в базовую часть учебного плана по направлению подготовки 20.03.01 «Техносферная безопасность» направленности «Инженерная защита окружающей среды», «Защита в чрезвычайных ситуациях», «Безопасность технологических процессов и производств».

Требования к результатам освоения дисциплины: в результате освоения дисциплины формируются следующие компетенции: ОПК-1; ПК-20; ПК-23.

Краткое содержание дисциплины: элементы термодинамики, теория тепловых машин, основные процессы теплопереноса, механизм теплопроводности, элементарная теория конвекции, теория теплового излучения, передача тепла при фазовых переходах.

Общая трудоемкость дисциплины: 108 часов / 3 зач. ед.

Промежуточный контроль: 4 семестр – зачет с оценкой.

1. Цель освоения дисциплины

Целью освоения дисциплины является:

- 1) получение студентами теоретических и практических знаний и приобретение умений и навыков в области термодинамики и теплопередачи с учетом современных тенденций развития техники и технологий;
- 2) формирование умения создавать физические модели происходящего и устанавливать связь между явлениями;
- 3) формирование способности применять на практике навыки проведения и описания исследований, в том числе экспериментальных.

2. Место дисциплины в учебном процессе

Дисциплина «Теплофизика» включена в обязательный перечень дисциплин учебного плана базовой части. Дисциплина «Теплофизика» реализуется в соответствии с требованиями ФГОС, ОПОП ВО и Учебного плана по направлению 20.03.01 «Техносферная безопасность», направленностям «Инженерная защита окружающей среды», «Защита в чрезвычайных ситуациях», «Безопасность технологических процессов и производств».

Предшествующими курсами, на которых непосредственно базируется дисциплина «Теплофизика», является «Физика» и «Математика».

Дисциплина «Гидрогазодинамика» является основополагающей для изучения следующих дисциплин (по направленностям):

- направленность «Инженерная защита окружающей среды»: «Процессы и аппараты защиты окружающей среды», «Возобновляемые источники энергии», «Рециклинг отходов»;
- направленность «Защита в чрезвычайных ситуациях»: «Опасные природные процессы», «Прогнозирование техногенных чрезвычайных ситуаций»;
- направленность «Безопасность технологических процессов и производств»: «Тракторы и автомобили», «Пожарная безопасность в агропромышленном комплексе».

Рабочая программа дисциплины «Теплофизика» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций, представленных в таблице 1.

Таблица 1 **Требования к результатам освоения учебной дисциплины**

No	Код	Содержание	В результате изуче	ния учебной дисциплины обуча	ющиеся должны:
п/п	компе- тенции	компетенции (или её части)	знать	уметь	владеть
1.	ОПК-1	Способность учитывать современные тенденции развития техники и технологий в области обеспечения техносферной безопасности, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности	шин и климатической техники и условия их безопасной эксплуатации;	выделять в профессиональных задачах изучаемые процессы и явления; применять физические знания для анализа профессиональных и бытовых задач и учитывать возможное неблагоприятное или опасное их развитие	методикой решения про- стейших физико-технических задач в профессиональной области и повседневной жиз- ни, умением анализировать и применять физико- техническую информацию в профессиональной деятельно- сти и повседневной жизни
2.	ПК-20	Способность принимать участие в научно-исследовательских разработках по профилю подготовки: систематизировать информацию по теме исследований, принимать участие в экспериментах, обрабатывать полученные данные	ших теплообменных систем; условия возникновения фазовых переходов при различ-	простейших тепловых ма- шин и теплообменных сис- тем, с помощью математи- ческих моделей процессов	навыками решения задач и анализа результатов
3.	ПК-23	Способность применять на практике навыки проведения и описания исследований, в том числе экспериментальных		тепловых машин и теплооб- менных процессов с учетом реальных условий; приме- нять полученные знания в практической деятельности	навыками решения задач и их оценкой

4. Структура и содержание дисциплины

4.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице 2.

Таблица 2 Распределение трудоёмкости дисциплины по видам работ

	Трудоёмкость
Вид учебной работы	час.
Общая трудоёмкость дисциплины по учебному плану	108
1. Контактная работа:	50,35
Аудиторная работа	50,35
в том числе:	
лекции (Л)	16
практические занятия (ПЗ)	34
контактная работа на промежуточном контроле (КРА)	0,35
2. Самостоятельная работа (СРС)	57,65
Контрольная работа	10
самостоятельное изучение разделов, самоподготовка	
(проработка и повторение лекционного материала и ма-	38,65
териала учебников и учебных пособий, подготовка к прак-	38,03
тическим занятиям и т.д.)	
Подготовка к зачёту с оценкой (контроль)	9
Вид промежуточного контроля:	зачёт с оценкой

4.2 Содержание дисциплины

Таблица 3 **Тематический план учебной дисциплины**

Наименование разделов и тем		Аудиторная работа			Внеаудито
дисциплин (укрупнённо)	Всего	Л	П3	ПКР	рная
дисциплин (укрупненно)					работа СР
Раздел 1. «Термодинамика»	48	8	18		22
Раздел 2. «Основы теплопередачи»	59,65	8	16		35,65
контактная работа на промежуточном	0,35			0,35	
контроле (КРА)				·	
Всего за 4 семестр	108	16	34	0,35	57,65
Итого по дисциплине	108	16	34	0,35	57,65

Содержание разделов дисциплины

Раздел 1. Термодинамика

- **Тема 1.** *Основные понятия термодинамики*.
 - 1. Термодинамические системы: открытая, закрытая, изолированная.
 - 2. Уравнение состояния идеального газа. Изопроцессы.
 - 3. Смесь идеальных газов.
- Тема 2 Первый и второй законы термодинамики. Круговые процессы
 - 1. Внутренняя энергия идеального газа.
 - 2. Число степеней свободы молекул и его зависимость от температуры
 - 3. Теплоёмкость идеального газа.
 - 4. Определение работы газа в различных процессах.
 - 5. Энтальпия идеального газа.
 - 6. Интеграл Клаузиуса. Энтропия.
 - 7. Круговые процессы. Прямой и обратный циклы Карно.
 - 8. Тепловые машины.

Тема 3 Реальный газ

- 1.Поправки на взаимодействие молекул и уравнение Ван-дер-Ваальса
- 2.Семейство изотерм Ван-дер-Ваальса
- 3. Критическая изотерма и критические параметры

Тема 4 Фазовые переходы

- 1.Изотермы реального газа.
- 2.Процесс парообразования на P-V диаграмме
- 3. Метастабильные состояния: перегретая жидкость и пересыщенный пар.
- 4. Диаграмма Р-Т на примере диаграммы испарения воды.
- 5. Уравнение Клаузиуса Клапейрона.
- 6.Влажный воздух. Диаграмма Рамзина.

Раздел 2. Основы теплопередачи

- **Tema1.** Виды теплообмена. Теплопроводность
 - 1. Основные понятия и определения.
 - 2. Теплопроводность. Закон Фурье для теплопроводности.
 - 3. Явление теплопроводности как одно из явлений переноса.
 - 4. Коэффициент теплопроводности и его зависимость от физических параметров.
 - 5. Краевые условия и граничные условия.

Тема 2. Конвекция. Основы теории подобия

1. Основные факторы, влияющие на интенсивность конвективного теплообмена.

- 2. Характер течения жидкости и газа при конвекции.
- 3. Основные сведения из теории подобия и размерностей.
- 4. Физический смысл критериев подобия.

Тема 3. *Теплообмен при фазовых переходах*

- 1. Теплообмен при испарении.
- 2. Теплообмен при кипении жидкости в большом объёме и на поверхности.
- 3. Теплообмен при конденсации пара.

Тема 4 Теплообмен излучением. Основные законы излучения

- 1.Связь между испускательной и поглощательной способностями тел.
- 2. Законы излучения абсолютно черного тела.
- 3. Спектральная плотность энергетической светимости для различных температур.
- 4. Излучение и поглощение лучистой энергии нечерными телами.
- 5. Теплообмен излучением между плоскими поверхностями. Экраны.

4.3 Лекции/практические занятия

Таблица 4

Содержание лекций/практических занятий и контрольные мероприятия

№ п/п	№ раздела	№ и название лекций/ практических занятий	Формиру емые компетен ции	Вид контроль ного мероприя тия	Кол-во часов
1.	Раздел 1. «Термодил	намика»			26
	Тема 1. Основ-	Лекция 1.Основные поня- тия термодинамики	ОПК-1 ПК-20		2
	ные понятия термодинамики	ПЗ 1. Идеальный газ.	ОПК-1 ПК-20 ПК-23	Решение задач	2
	Тема 2. Первый	Лекция 2. Первый и второй законы термодинамики	ОПК-1 ПК-20		2
	и второй зако- ны термодина- мики.	ПЗ 2. Внутренняя энергия. Число степеней свободы.	ОПК-1 ПК-20	Решение задач	2
		ПЗ 3. Адиабатный процесс.	ОПК-1 ПК-20 ПК-23	Решение задач	2

№ п/п	№ раздела	№ и название лекций/ практических занятий	Формиру емые компетен ции	Вид контроль ного мероприя тия	Кол-во часов
		ПЗ 4. Второй закон термодинамики.	ОПК-1 ПК-20	Решение задач	2
		ПЗ 5.Тепловые машины.	ОПК-1 ПК-20	Решение задач	2
	Тема 3. Реаль-	Лекция 3.Реальный газ.	ОПК-1 ПК-20		2
	ный газ.	ПЗ 6. Уравнение Ван-дер- Ваальса.	ОПК-1 ПК-20	Решение задач	2
		Лекция 4. Фазовые пере- ходы.	ОПК-1 ПК-20		2
	Тема 4. Фазовые переходы	ПЗ 7. Уравнение теплового баланса.	ОПК-1 ПК-20	Решение задач	2
		ПЗ 8. Изучение влажного воздуха с применением диаграммы Рамзина.	ОПК-1 ПК-20 ПК-23	Решение задач	2
		ПЗ 9. Цикл Ренкина с перегревом пара.	ОПК-1 ПК-20	Решение задач	2
2.	Раздел 2. «Основы	геплопередачи»			24
	Тема 1. Виды теплообмена. Теплопроводность.	Лекция 5. Виды теплообмена. Теплопроводность.	ОПК-1 ПК-20		2
		ПЗ 10. Теплопроводность. Одномерная задача. Слоистая структура.	ОПК-1 ПК-20	Решение задач	2
		ПЗ 11. Теплопроводность. Цилиндрическая симметрия.	ОПК-1 ПК-20	Решение задач	2
		ПЗ 12. Экспериментальное изучение теплопередачи.	ОПК-1 ПК-20 ПК-23	Решение задач	2
	Taya 2 Var	Лекция 6.Конвекция.	ОПК-1 ПК-20		2
	Тема 2. Конвекция.	ПЗ 13. Конвекция и критерии подобия	ОПК-1 ПК-20	Решение задач	2
	Тема 3. Тепло- обмен при фа-	Лекция 7. Теплообмен при фазовых переходах.	ОПК-1 ПК-20		2

№ п/п	№ раздела	№ и название лекций/ практических занятий	Формиру емые компетен ции	Вид контроль ного мероприя тия	Кол-во часов
	зовых переходах	ПЗ 14. Теплообмен при испарении и конденсации.	ОПК-1 ПК-20	Решение задач	2
	Тема 4. Тепло- обмен излуче-	Лекция 8. Теплообмен из- лучением	ОПК-1 ПК-20		2
	нием	ПЗ 15. Теплообмен излуче нием.	ОПК-1 ПК-20	Решение задач	2
		ПЗ 16. Экспериментальное изучение теплового излучения.	ОПК-1 ПК-20 ПК-23	Решение задач	3
		Контрольная работа по дисциплине	ОПК-1 ПК-20	Кон- тольная работа	1

4.4 Перечень вопросов для самостоятельного изучения дисциплины

Таблица 5

№ п/п	№ разде- ла и темы	Перечень рассматриваемых вопросов для самостоятельного изучения и перечень компетенций, осваиваемых при их изучении (может осваиваться часть компетенции)				
Разд	ел 1					
1.	Тема 2	Интеграл Клаузиуса. Энтропия. Круговые процессы. (ОПК-1, ПК-20)				
2.	Тема 3	Критические параметры (ОПК-1, ПК-20)				
3.	Тема 4	Метастабильные состояния				
		Влажный воздух. Диаграмма Рамзина. (ОПК-1, ПК-20)				
Разд	(ел 2					
5.	Тема 1	Теплопроводность. (ОПК-1, ПК-20)				
6.	Основные сведения из теории подобия и размерностей. (ОПК-1, ПК-20)					
	Тема 2	Физический смысл критериев подобия. (ОПК-1, ПК-20)				
7.	Тема 3	Теплообмен при кипении жидкости в большом объёме и на поверхности				
		(ОПК-1, ПК-20)				
8.	Тема 4	Законы излучения абсолютно черного тела. (ОПК-1, ПК-20)				
		Теплообмен излучением между плоскими поверхностями.				
		Экраны. (ОПК-1, ПК-20)				

5. Образовательные технологии

Таблица 6

Применение активных и интерактивных образовательных технологий

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий
1.	ПЗ 1. Идеальный газ.	ПЗ	Работа в ма- лых группах
2.	ПЗ 3. Адиабатный процесс.	ПЗ	Работа в ма- лых группах
3.	ПЗ 8. Изучение влажного воздуха с применением диаграммы Рамзина.	ПЗ	Работа в ма- лых группах
4.	ПЗ 12. Экспериментальное изучение теплопередачи.	ПЗ	Работа в ма- лых группах
5.	ПЗ 16. Экспериментальное изучение теплового излучения.	ПЗ	Работа в ма- лых группах

6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

6.1 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности.

Типовые задачи для контроля на практических занятиях и для зачета с оценкой.

Типовые задачи по разделу 1.

- 1. Количество вещества гелия v = 1,5 моль, температура T = 120 К. Определить суммарную кинетическую энергию Ек поступательного движения всех молекул этого газа.
- 2. Определить среднюю длину свободного пробега < ℓ > молекулы азота в сосуде вместимостью V = 5 л. Масса газа m = 0,5 г. Эффективный диаметр молекулы d =0,3 \cdot 10 $^{-9}$ м.
- 3. Чему равно изменение энтропии 10 г воздуха при изотермическом расширении от 3 до 8 л?
- 4. При высокой температуре половина молекул азота диссоциировала на атомы. Чему равна удельная теплоемкость Ср при постоянном давлении в этих условиях? Найти показатель адиабаты.

Типовые задачи по разделу 2.

1. Пространство между двумя параллельными пластинами заполнено гелием. Расстояние между пластинами L = 50 мм. Одна пластина поддерживается

- при температуре 20°C, другая при температуре 40°C. Вычислить плотность потока тепла в ваттах на кв.м. при давлении P = 105 Па.
- 2.Коэффициент теплопроводности кислорода при температуре 100° С равен $3,25\cdot10^{-2}$ Вт/м·К. Вычислить коэффициент вязкости η кислорода при этой температуре.
- 3.Определить плотность потока тепла через плоскую стенку толщиной 37.5 см , выложенной из кирпича, если перепад температур составляет 50 К?
- 4.Найти поток тепла через кирпичную стену, если между слоями d_1 =25 см и d_2 =12.5 см находится прослойка утеплителя d =15см. Коэффициент теплопроводности кирпича 0.5 Bт/м·К, утеплителя 0.06 Bт/м·К. Площадь стены 25 м².
- 5.В условиях предыдущей задачи построить график изменения температуры от координаты.
- 6.Параллельные поверхности двух тел обмениваются теплом. Температура первого тела T_1 = 300 K, второго T_2 = 350 K. Поглощательная способность первого тела A_1 = 0.7, второе тело можно считать абсолютно черным телом. Найти плотность теплового потока между телами, обусловленного излучением тел. Краевыми эффектами пренебречь.
- 7.В условиях предыдущей задачи найти плотность потока тепла за счёт теплопроводности, если между телами находится воздух. Расстояние между поверхностями тел равно 2м. Коэффициент теплопроводности воздуха 0.035 Вт/м⋅К.
- 8. Какой способ теплообмена является основным в этих условиях?

Полный комплект задач содержится в сборнике задач по курсу физики (см. пункт 7.1) рабочей программы дисциплины.

Типовой вариант контрольной работы по дисциплине

- 1.В баллоне вместимостью V=15 л находится аргон под давлением $P_1=600$ кПа при температуре $T_1=300$ К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до $P_2=400$ кПа, а температура установилась $T_2=260$ К. Определить массу m аргона, взятого из баллона.
- 2. Определить количество теплоты Q, которое надо сообщить кислороду объемом V = 50 л при его изохорном нагревании, чтобы давление газа повысилось на Δ p = 0,5 MПа.
- 3.В калориметр, в котором находится 300 г воды при 12°С, поместили 200 г железа при 100°С. Как изменяется энтропия системы при уравнивании температур?
- 4.Найти число молекул азота, находящихся при нормальных условиях в объёме 1 см^3 и обладающих скоростью: а) между 99 м/c и 101 м/c, б) между 499 м/c и 501 м/c.

Перечень вопросов, выносимых на промежуточную аттестацию (зачет с оценкой)

Вопросы по разделу 1.

- 1. Какие системы называются а) открытыми; б) закрытыми; в) изолированными?
- 2. Записать уравнение состояния идеального газа в различных формах.
- 3. Как представить уравнение состояния для смеси идеальных газов?
- 4. Что такое внутренняя энергия термодинамической системы?
- 5. Какие виды энергии частиц надо учитывать для различных состояний и веществ при нахождении внутренней энергии?
- 6. Как определить число степеней свободы одной молекулы?
- 7. Как определить работу идеального газа по диаграмме P-V?
- 8. Работа идеального газа в различных изопроцессах (4 случая).
- 9. Какой закон является законом сохранения энергии в термодинамике?
- 10. Теплоёмкость идеального газа при постоянном объёме.
- 11. Теплоёмкость при постоянном давлении.
- 12. Как изменяется теплоёмкость при изменении температуры в широком диапазоне, пока газ можно считать идеальным?
- 13. Как определить число степеней одной молекулы по графику адиабаты?
- 14. Что такое энтальпия и каков физический смысл её приращения?
- 15. Что такое интеграл Клаузиуса и для каких процессов он равен нулю?
- 16. Термодинамическое определение энтропии и аналитическое выражение второго начала термодинамики.
- 17. При каких условиях тепловая машина называется идеальной?
- 18. Как осуществляется цикл Карно?
- 19. Чему равен КПД цикла Карно?
- 20. Как учитывается отталкивание и притяжение молекул в уравнении Вандер-Ваальса?
- 21. Критическая изотерма.
- 22. Критические параметры и их связь с поправками $a\ u\ b$.
- 23. Как из изотермы Ван-дер-Ваальса получается реальная изотерма?
- 24. Почему на реальной изотерме есть участок изобары?
- 25. Показать двухфазную область на P-V диаграмме.
- 26. Какие участки изотермы Ван-дер-Ваальса представляют метастабильные состояния?
- 27. Какие опасные явления связаны с фазовыми переходами из метаста-бильных состояний?
- 28. Построение Р Т диаграммы на примере кривой испарения воды.
- 29. Как вывести уравнение Клаузиуса Клапейрона?

Вопросы по разделу 2.

- 30. Перечислить основные виды теплообмена.
- 31. Что объединяет явления диффузии, вязкости и теплопроводности?
- 32. Как зависит коэффициент теплопроводности идеального газа от плотности и от температуры?

- 33. Как зависят плотность потока тепла и температура от координат в стационарной задаче теплопроводности: а) между параллельными плоскостями; б) между концентрическими сферами; в) между цилиндрическими поверхностями с общей осью.
- 34. Что такое свободная конвекция?
- 35. Какой безразмерный коэффициент (критерий) отвечает за свободную конвекцию?
- 36. Как связаны испускательная и поглощательная способности нагретых тел?
- 37. Как на кривой спектральной плотности энергетической светимости абсолютно черного тела проявляются законы Стефана Больцмана и Вина?
- 38. При каких условиях лучистый теплообмен является преобладающим?

6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Критерии оценки решения задачи на практическом занятии, контрольной работе, зачете с оценкой:

- **5 баллов** выставляется студенту, если в логически выстроенном решении правильно указаны формулы всех необходимых физических законов с пояснениями, сделаны все необходимые математические преобразования, рисунки (при необходимости), получен правильный ответ;
- 4 балла выставляется студенту, если в ответе указаны все необходимые физические законы с пояснениями, приведены рисунки (при необходимости), но в пояснениях к физическим законам или в рисунке содержатся неточности или допущена математические ошибка при решении;
- 3 балла выставляется студенту, если в ответе указаны только необходимые физические законы или рисунки (при необходимости), или в законах и рисунке допущены ошибки;
- 2 балла решение не содержит основной понятийный аппарат по теме задачи.

Для работы на практических занятиях «Идеальный газ», «Адиабатный процесс», «Изучение влажного воздуха с применением диаграммы Рамзина», «Экспериментальное изучение теплопередачи», «Экспериментальное изучение теплового излучения» студенты разбиваются на малые группы по 3 - 5 человек. Каждая группа проводит расчет результатов работы и их анализ индивидуально.

Для допуска к зачету с оценкой студент обязан решить итоговую контрольную работу на оценку «зачет».

Итоговая оценка по контрольной работе **«зачет»** или **«незачет»** определяется по среднему баллу по всем задачам варианта контрольной работы:

0 - 2,4 балла – «незачет»;

2,5 – 5 баллов – «зачет».

Критерии оценки ответов на вопросы к зачету с оценкой:

- 5 баллов выставляется студенту, если в логически выстроенном ответе на вопрос правильно указаны все необходимые физические законы и определения с пояснениями, правильно описаны явления, представлен вывод основных формул в соответствии с изложенным лекционным материалом;
- 4 балла выставляется студенту, если в ответе указаны все необходимые физические законы и определения с пояснениями, описаны явления, но в пояснениях к законам и определениям содержатся неточности и (или) явления описаны с ошибкой и (или) не представлен вывод основных формул в соответствии с изложенным лекционным материалом;
- 3 балла выставляется студенту, если в ответе указаны только необходимые физические законы, определения без пояснений (или в пояснениях содержатся ошибки) и (или) при описании явления допущены ошибки (или описание отсутствует);
- 2 балла ответ не содержит основной понятийный аппарат по теме вопроса.

Зачет с оценкой: 1 теоретический вопрос и 1 задача.

На зачете с оценкой студент отвечает на один теоретический вопрос и решает одну задачу. Вопрос и задачу студент выбирает случайно из комплекта предлагаемых ему соответствующих материалов. Итоговая оценка по зачету с оценкой выставляется по средней арифметической оценке ответов на теоретические вопросы и решения задачи:

- 1. **«отлично»** от 4,5 до 5 баллов;
- 2. **«хорошо»** от 3,5 до 4,4 баллов;
- 3. **«удовлетворительно»** от 2,5 до 3,4 баллов;
- 4. **«неудовлетворительно»** от 0 до 2,4 баллов.

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Основная литература

- 1. Савельев И.В.: Курс общей физики. В 3 томах. Т.1. Механика. Молекулярная физика. М.: Наука, 1987-1988 г.
- 2. Трофимова Т.И. Курс физики. Учебное пособие для вузов. 16-е изд. стер.-М.: Академия, 2007, 2008, 2012.
- 3. Трофимова Т.И. Сборник задач по курсу физики. Учебное пособие. М.: Высшая школа, 2008.

7.2. Дополнительная литература

- 1. Сивухин Д.В.: Общий курс физики. Термодинамика и молекулярная физика. Т. II. М.: Наука, 1979.
- 2. Михеев М.А., Михеева И.М. Основы теплопередачи. М.: Энергия, 1979.
- 3. Крейт Ф., Блэйк У. Основы теплопередачи. Пер. с англ. М.: Мир, 1983.

7.3 Нормативные правовые акты

Не предусмотрено.

7.4 Методические указания, рекомендации и другие материалы к занятиям

1.Методические указания к лабораторным работам. Изд. ВУЗА. 1987-2018 г.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Не предусмотрено

9. Перечень программного обеспечения и информационных справочных систем (при необходимости)

Не предусмотрено

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 10 Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

каоинетами, лаоораториями							
Наименование специ-							
альных помещений и							
помещений для само-	Оснащенность специальных помещений и помещений						
стоятельной работы (№							
учебного корпуса, № ау-							
дитории)							
1	2						
Учебная лаборатория	1.Стол 21 шт.						
(Учебный корпус № 28 ауд. 301а)	2.Стулья 39 шт.						
	3. Доска меловая 1 шт.						
	4.Шкафы 2 шт.						
	5. Типовой комплект оборудования лаборатории «Молекулярная физика и						
	термодинамика» 1 шт. (инв.№410124000603107)						
	6.Комплект приборов по физике 1 шт. (инв.№ 41013400000312)						
	7.Лабораторный комплекс ЛКТ-9 «Основы молекулярной физики и термоди-						
	намики» 1 шт. (инв.№ 410124000602810)						
Учебная аудитория для проведения	1.Парты 23 шт.						
занятий семинарского типа	2. Стулья 1шт.						
(Учебный корпус № 28 ауд. 301б)							
	4. Доска меловая 1шт.						
V. C.	5.Шкафы 1 шт.						
Учебная аудитория для проведения	1.Стол 1 шт.						
занятий лекционного типа	2. Стулья 1шт.						
(Учебный корпус № 28 ауд. 304)	3.Доска меловая 2 шт.						
	4. Кафедра 1 шт. 5. Акустическая система двухполосная пассивная 2 шт.						
	 5.Акустическая система двухполосная пассивная 2 шт. (инв.№410134000000991, 410134000000992) 						
	6.Микрофон конденсаторный SHM 205A на гусиной шее 2 шт. (инв.№41034000000987, 41034000000987)						
	7. Hoyтбук ACER E-Machines e-430-102G16Mi FMD M100 1 шт. (инв.№ 210134000000702)						
	8.Пульт премиум класса микшерный Behringer XENYX 1832 FX 1 шт. (инв.№ 41013400000986)						
	9.Радиосистема вокальная 16-ти канальная двухантенная 1 шт. (инв. №41013400000990)						

	10.Радиосистема двухантенная петличная 1 шт. (инв. №41013400000989) 11. Экран 1 шт.
Учебная лаборатория	1.Парты 17 шт.
(Учебный корпус № 28 ауд. 337)	2.Стулья 37 шт.
	3.Доска меловая 1 шт.
	4.Шкафы 1 шт.
	5.Монохроматор УМ-2 1 шт. (инв.№ 410134000003080)
	6.Типовой комплект оборудования лаборатории «Квантовая физика» 1 шт. (инв.№ 410124000603114)
	7.Установка для экспер. изуч.з-нов тепл.изл. 1 шт. (инв.№ 41013400000313)
	8.Лабораторный комплекс ЛКО-1 М «Когерентная оптика» (с полупроводниковым лазером) 1 шт. (инв.№ 410124000602816)
	9. Гониометр 1 шт. (инв.№ 41013400000303)
Библиотека	
Читальный зал	

11. Методические рекомендации студентам по освоению дисциплины

После каждой лекции требуется самостоятельная проработка изложенного материала. На практическом занятии студент у доски решает задачи и получает задачи для самостоятельной проработки.

Виды и формы отработки пропущенных занятий

Студент, пропустивший <u>лекцию</u>, должен отработать теоретический материал по соответствующей теме самостоятельно.

Студент, пропустивший <u>практическое занятие</u>, должен самостоятельно изучить вопросы теории и решить задачи.

12. Методические рекомендации преподавателям по организации обучения по дисциплине

Для более успешного освоения дисциплины «Теплофизика» рекомендуется сначала давать студентам лекционный материал, а затем закреплять его виде практических занятий.

Изучение курса складывается из лекций, практических занятий и самостоятельной работы студентов.

На лекциях освещаются основополагающие вопросы программы. Часть разделов выносится на самостоятельную проработку.

Экспериментальные работы наглядно демонстрируют физические законы и явления, формируют умение работать в группе, а также навыки обработки полученной информации.

Программу	разработала:	
Пришеп В.Л	I., к.фм.н., лоцент	

РЕЦЕНЗИЯ

на рабочую программу дисциплины «Теплофизика»

ОПОП ВО по направлению 20.03.01 — «Техносферная безопасность», направленности «Инженерная защита окружающей среды», «Защита в чрезвычайных ситуациях», «Безопасность технологических процессов и производств» (квалификация выпускника — бакалавр)

Карнауховым Вячеславом Михайловичем, доцентом кафедры высшей математики ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева», кандидатом физико – математических наук (далее по тексту рецензент), проведена рецензия рабочей программы дисциплины «Теплофизика» ОПОП ВО по направлению 20.03.01 - «Техносферная безопасность», направленность «Инженерная защита окружающей среды», «Защита в чрезвычайных ситуациях», «Безопасность технологических процессов и производств» (бакалавриат) разработанной в ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева», на кафедре физики (разработчик – Прищеп Вера Леонидовна, доцент кафедры физики, кандидат физико – математических наук).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

- 1. Предъявленная рабочая программа дисциплины «Теплофизика» (далее по тексту Программа) <u>соответствует</u> требованиям ФГОС по направлению 20.03.01 «Техносферная безопасность». Программа <u>содержит</u> все основные разделы, <u>соответствует</u> требованиям к нормативно-методическим документам.
- 2. Представленная в Программе *актуальность* учебной дисциплины в рамках реализации ОПОП ВО *не подлежит сомнению* дисциплина относится к базовой части учебного цикла Б1.
- 3. Представленные в Программе *цели* дисциплины <u>соответствуют</u> требованиям ФГОС направления 20.03.01 «Техносферная безопасность».
- 4. В соответствии с Программой за дисциплиной «Теплофизика» закреплено 3 *ком- петенции*. Дисциплина «Теплофизика» и представленная Программа *способна реализовать* их в объявленных требованиях.
- 5. *Результаты обучения*, представленные в Программе в категориях знать, уметь, владеть <u>соответствуют</u> специфике и содержанию дисциплины и <u>демонстрируют возможность</u> получения заявленных результатов.
- 6. Общая трудоёмкость дисциплины «Теплофизика» составляет 3 зачётных единицы (108 часов).
- 7. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин <u>соответствует</u> действительности. Дисциплина «Теплофизика» взаимосвязана с другими дисциплинами ОПОП ВО и Учебного плана по направлению 20.03.01 «Техносферная безопасность» и возможность дублирования в содержании отсутствует. Поскольку дисциплина не предусматривает наличие специальных требований к входным знаниям, умениям и компетенциям студента, хотя может являться предшествующей для специальных, в том числе профессиональных дисциплин, использующих знания в области теплофизики в профессиональной деятельности бакалавра по данному направлению подготовки.
- 8. Представленная Программа предполагает использование современных образовательных технологий, используемых при реализации различных видов учебной работы. Формы образовательных технологий *соответствуют* специфике дисциплины.
- 9. Программа дисциплины «Теплофизика» предполагает 5 занятий в интерактивной форме.
- 10. Виды, содержание и трудоёмкость самостоятельной работы студентов, представленные в Программе, <u>соответствуют</u> требованиям к подготовке выпускников, содержащимся во $\Phi\Gamma$ ОС ВО направления 20.03.01 «Техносферная безопасность».

11. Представленные и описанные в Программе формы *текущей* оценки знаний <u>соответствуют</u> специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний студентов, предусмотренная Программой, осуществляется в форме зачета с оценкой, что <u>соответствует</u> статусу дисциплины как дисциплины базовой части учебного цикла – Б1 ФГОС направления 20.03.01 – «Техносферная безопасность».

- 12. Формы оценки знаний, представленные в Программе, *соответствуют* специфике дисциплины и требованиям к выпускникам.
- 13. Учебно-методическое обеспечение дисциплины представлено: основной литературой -3 источника (базовые учебники и сборник задач), дополнительной литературой -3 наименования и $\underline{coombemcmbyem}$ требованиям ФГОС направления 20.03.01 «Texhocфephan безопасность».
- 14. Материально-техническое обеспечение дисциплины соответствует специфике дисциплины «Теплофизика» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.
- 15. Методические рекомендации студентам и методические рекомендации преподавателям по организации обучения по дисциплине дают представление о специфике обучения по дисциплине «Теплофизика».

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины «Теплофизика» ОПОП ВО по направлению 20.03.01 – «Техносферная безопасность», направленности «Инженерная защита окружающей среды», «Защита в чрезвычайных ситуациях», «Безопасность технологических процессов и производств» (квалификация выпускника — бакалавр), разработанная Прищеп Верой Леонидовной, доцентом кафедры физики, кандидатом физико — математических наук, соответствует требованиям ФГОС ВО, современным требованиям экономики, рынка труда и позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Карнаухов Вячеслав Михайлович, доцент кафедры высшей математики ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева», кандидат физико – математических наук						
m/8	(подпись)	« 20	»	12	_ 2018 г.	