ISOS ISOS

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – МСХА имени К.А. ТИМИРЯЗЕВА»

(ФГБОУ ВО РГАУ - МСХА имени К.А. Тимирязева)

Институт мелиорации, водного хозяйства и строительства имени А.Н. Костякова Кафедра физики

УТВЕРЖДАЮ:

И. О. директора института механики и энергетики имени В.П. Горячкина

Ю.В. Катаев

2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1. О.07 ФИЗИКА

для подготовки бакалавров

ΦΓΟС ΒΟ

Направление: 13.03.02 – Электроэнергетика и электротехника

Направленность: Электроснабжение

Kypc 1, 2

Семестр 2, 3, 4

Форма обучения - очная

Год начала подготовки – 2019

Регистрационный номер

Москва, 2019

Разработчики:	A.	pies		
Храмшина Э.В. ст. преподаватель	2/	«26»	08	2019 Γ.
Попов А.И. к.т.н., доцент	Sons			
		«26»	08	201 <u>9</u> Γ
	-			
	nM	+		
Рецензент: Карнаухов В.М., к.фм.н., доцент _	110		A	
		«26»	08	2019_{Γ}
Программа составлена в соответствии с требов нию подготовки 13.03.02— Электроэнергетика и плана. Программа обсуждена на заседании кафедры	и электрот	ехника	и учеб	ного
протокол № <u>10</u> от « <u>26</u> » <u>08</u> 2019г.				
D. I. W. K	OHE	/	4///	7
Зав. кафедрой Коноплин Н.А., к.фм.н., доц	ент	" rek	160	20191
C		100	100	
Согласовано:				
Председатель учебно-методической				
комиссии института механики и энергетики имени В. П. Горячкина			- 0	60.
Парлюк Е.П., к.э.н., доцент		*	Staff	Mes
Парлюк Б.П., к.э.п., доцен		((27))	12	20191
		-		
		-		
Заведующий выпускающей кафедрой				
«Электроснабжения и электротехники				
имени академика И.А.Будзко»			B	
Стушкина Н.А., к.т.н., доцент		-6	ally	2019
		(127	» 12	2019
	10			
Заведующий отделом комплектования ЦНБ	all	1-	imier)	
		(110)	inco	
			, рпп	W OWATES
Бумажный экземпляр РПД, копии электрог	нных вар	иантов	гид	и оцено
ных материалов получены:				
Методический отдел УМУ		- 4	**	201 г
		<<	>>>	

СОДЕРЖАНИЕ

AF	НОТАЦИЯ	4
1.	ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ	4
2.	МЕСТО ДИСЦИПЛИНЫ В УЧЕБНОМ ПРОЦЕССЕ	5
1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ4		
4.	СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
	ПО СЕМЕСТРАМ	5 8 12
6. T	ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТОГА СВОЕНИЯ ДИСЦИПЛИНЫ	AM 23
	НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ	23
7.	УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	30
	7.2 ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	30 30
		31
	,	31
	ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ СУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	31
11.	. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	. 33
	Виды и формы отработки пропущенных занятий	33
	МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРЕПОДАВАТЕЛЯМ ПО ОРГАНИЗАЦИИ ОБУЧЕНИ	Я ПС

АННОТАЦИЯ

рабочей программы учебной дисциплины Б1. О.07 «ФИЗИКА» для подготовки бакалавра по направлению 13.03.02— «Электроэнергетика и электротехника» направленности — «Электроснабжение».

Цель освоения дисциплины: Развивать способность осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач. Уметь использовать системный подход для решения поставленных задач. Развить способность осуществлять социальное взаимодействие и уметь реализовывать свою роль в команде. Научить взаимодействовать с другими членами команды для достижения поставленной задачи. Овладеть способностью применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач. Умение демонстрировать понимание физических явлений и применять законы механики, термодинамики, электричества и магнетизма, оптики.

Место дисциплины в учебном плане: дисциплина включена в обязательную часть учебного плана по направлению подготовки 13.03.02— «13.03.02— Электроэнергетика и электротехника» направленность «Электроснабжение».

Требования к результатам освоения дисциплины: в результате освоения дисциплины формируются следующие компетенции: УК-1(УК-1.2); УК-3(УК-3.2); ОПК-2(OПK-2.5); ОПК-2(OПK-2.6).

Краткое содержание дисциплины: механика материальной точки и твердого тела, колебания и волны, молекулярно-кинетическая теория, термодинамика, электростатика, постоянный ток, квантовая теория физики твердого тела, магнитное поле, теория электромагнитного поля, волновые и квантовые свойства света, строение атома, элементы квантовой физики, ядерная физика.

Общая трудоемкость дисциплины: 468 часов / 13 зач. ед.

Промежуточный контроль: 2 семестр — экзамен, 3 семестр — зачет с оценкой, 4 семестр — экзамен.

1. Цель освоения дисциплины

Целью освоения дисциплины «Физика» является освоение студентами теоретических и практических знаний и приобретение умений и навыков в области механики, термодинамики, электричества и магнетизма, оптики для развития способности применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач, используя системный подход. Для развития способности осуществлять социальное взаимодействие и уметь реализовывать свою роль в команде, взаимодействуя с другими членами команды для достижения поставленной задачи.

2. Место дисциплины в учебном процессе

Дисциплина «Физика» включена в обязательный перечень дисциплин учебного плана обязательной части. Дисциплина «Физика» реализуется в соответствии с требованиями ФГОС, ОПОП ВО и Учебного плана по направлению 13.03.01— «13.03.02— Электроэнергетика и электротехника» направленность «Электроснабжение».

Предшествующими курсами, на которых непосредственно базируется дисциплина «Физика» является «Высшая математика» 1 курс, 1 семестр.

Дисциплина «Физика» является основополагающей для изучения следующих дисциплин: «Теоретическая механика» 2 курс 3 семестр; «Теоретические основы электротехники» 2 курс 3, 4 семестры; «Метрология, стандартизация и сертификация», «Прикладная механика», «Монтаж электрооборудования» 2 курс 4 семестр; «Гидравлика», «Электрические измерения», «Электрические машины», «Электроника», «Общая энергетика» 3 курс 5 семестр; «Теплотехника», «Светотехника», «Электропривод», «Переходные процессы в электроэнергетических системах» 3 курс 6 семестр; «Электротехнологии», «Электроснабжение», «Релейная защита и автоматизация электроэнергетических систем», «Электрические станции и подстанции» 4 курс 7 семестр; «Электромеханические переходные процессы», «Электроэнергетические системы и сети», «Автономные системы электроснабжения» 4 курс 8 семестр и т. д....

Особенностью дисциплины является ее базовый характер для технических и естественно-научных дисциплин.

Рабочая программа дисциплины «Физика» для инвалидов и лиц с ограниченными возможностями здоровья разрабатывается индивидуально с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся.

3. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций, представленных в таблице 1.

4. Структура и содержание дисциплины

4.1 Распределение трудоёмкости дисциплины по видам работ по семестрам

Общая трудоёмкость дисциплины составляет 13 зач.ед. (468 часа), их распределение по видам работ по семестрам представлено в таблице 2.

Таблица 1 **Требования к результатам освоения учебной дисциплины**

	Код	Содержание	Код и содержание	В результате изучени	я учебной дисциплины об	учающиеся должны:
№ п/п	код компетен- ции	компетенции (или её части)	индикаторов достижения компетенций (или её части)	знать	уметь	владеть
1.	УК-1	Способен осуществ- лять поиск, критиче- ский анализ и синтез информации, приме- нять системный под- ход для решения по- ставленных задач	УК-1.2 - Использует системный подход и критический анализ для решения поставленных задач	Где и как осуществлять поиск синтез информации	Использовать системный подход и критический анализ для решения поставленных задач.	Существующими справочными материалами и методами математического анализа для их применения в теоретических и экспериментальных исследованиях
2.	УК-3	Способен осуществ- лять социальное взаимодействие и реализовывать свою роль в команде	УК-3.2 - Взаимо- действует с другими членами команды для достижения поставлен- ной задачи.	Назначение и принципы действия важнейших физических приборов. Основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения	Взаимодействовать с другими членами ко-манды для достижения поставленной задачи.	Правильной эксплуатацией основных приборов и оборудования современной физической лаборатории.
3.	ОПК- 2	Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач.	ОПК- 2.5 Де- монстрирует понима- ние физических явле- ний и применяет зако- ны механики, термоди- намики, электричества и магнетизма.	Основные физические явления и законы механики, термодинамики, электричества и магнетизма, оптики.	Демонстрировать понимание физических явлений и применять законы механики, термодинамики, электричества и магнетизма.	Методами математического аппарата для исследования физических процессов, численными методами обработки и интерпретацией я результатов эксперимента.
4.	ОПК- 2	Способен применять соответствующий фи-	ОПК- 2.6 Демонстрирует знание	Основные физические явления, понятия и за-	Демонстрировать знание элементарных основ оп-	Методами математиче- ского аппарата для ис-

зико-математический	элементарных основ	коны оптики, квантовой	тики, квантовой механи-	следования физических
аппарат, методы ана-	оптики, квантовой ме-	механики и атомной фи-	ки и атомной физики.	процессов, численны-
лиза и моделирова-	ханики и атомной фи-	зики.		ми методами обработ-
ния, теоретического и	зики			ки и интерпретацией я
экспериментального				результатов экспери-
исследования при				мента.
решении профессио-				
нальных задач.				

Таблица 2 Распределение трудоёмкости дисциплины по видам работ по семестрам

гаспределение грудоемкости дисциплины	I IIO DIIA	<u> </u>		СТРам	
			ёмкость		
Вид учебной работы	час.	В т.ч. по семестрам			
	час.	№ 2	№3	№4	
Общая трудоёмкость дисциплины по учебному	468	180	144	144	
плану	400	100	144	144	
1. Контактная работа:	149,15	50,4	48,35	50,4	
Аудиторная работа	149,15	50,4	48,35	50,4	
в том числе:					
лекции (Л)	48	16	16	16	
практические занятия (ПЗ)	48	16	16	16	
лабораторные работы (ЛР)	48	16	16	16	
консультации перед экзаменом	4	2	-	2	
контактная работа на промежуточном контроле	1,15	0,4	0,35	0,4	
(KPA)	1,13	0,4	0,55	0,4	
2. Самостоятельная работа (СРС)	318,85	129,6	95,65	93,6	
контрольная работа	30	10	10	10	
самостоятельное изучение разделов, самоподго-					
товка (проработка и повторение лекционного ма-					
териала и материала учебников и учебных посо-	185,65	86	76,65	59	
бий, подготовка к лабораторным и практическим					
занятиям, коллоквиумам и т.д.)					
Подготовка к экзамену (контроль)	58,2	33,6	-	24,6	
Подготовка к зачёту с оценкой (контроль)	9		9		
Вид промежуточного контроля:		Экза-	зачёт с	Экзамен	
		мен	оценкой		

4.2 Содержание дисциплины

Таблица 3 **Тематический план учебной дисциплины**

Политор от под того и пол		A	Аудиторная работа			
Наименование разделов и тем дисциплин (укрупнённо)	Всего	Л	ПЗ	ЛР	ПКР	рная работа СР
Введение	2	-	-	2	-	-
Раздел 1 «Физические основы механики»	68	6	6	6	-	50
Раздел 2 «Колебания и волны»	55,6	6	6	4	-	39,6
Раздел 3 «Молекулярная физика и термодинамика»	52	4	4	4	-	40
Консультации перед экзаменом	2	-	-	-	2	-
Контактная работа на промежуточном контроле (КРА)	0,4	-	-	-	0,4	-
Всего за 2 семестр	180	16	16	16	2,4	129,6
Раздел 4 «Электричество»	60	8	8	8	-	36
Раздел 5 «Квантовая теория физики твердого тела»	46	4	4	4	-	34
Раздел 6 «Магнетизм»	37,65	4	4	4	-	25,65
Контактная работа на промежуточном	0,35	_	-	-	0,35	-

Памиоморомию раздолор и том		A	удиторн	Внеаудито		
Наименование разделов и тем дисциплин (укрупнённо)	Всего	Л	ПЗ	ЛР	ПКР	рная работа СР
контроле (КРА)						
Всего за 3 семестр	144	16	16	16	0,35	95,65
Раздел 7 «Волновая оптика»	38	6	6	6	-	20
Раздел 8 «Квантовая оптика»	34	4	4	6	-	20
Раздел 9 «Квантовая физика»	42	4	4	4		30
Раздел 10 «Ядерная физика»	27,6	2	2	-	-	23,6
Консультации перед экзаменом	2	-	-	-	2	-
Контактная работа на промежуточном контроле (КРА)	0,4	-	-	-	0,4	-
Всего за 4 семестр	144	16	16	16	2,4	93,6
Итого по дисциплине	468	48	48	48	5,15	282,85

Раздел 1 «Механика»

Тема 1 «Кинематика»

Основные кинематические характеристики криволинейного движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.

Тема 2 «Динамика»

Инерциальные системы отсчета и первый закон Ньютона. Второй закон Ньютона. Масса, импульс, сила. Уравнение движения материальной точки. Третий закон Ньютона и закон сохранения импульса. Закон всемирного тяготения. Силы сопротивления. Центр масс механической системы, закон движения центра масс. Движение тел с переменной массой.

Тема 3 «Момент импульса»

Момент импульса материальной точки и момент механической системы. Момент силы. Закон сохранения момента механической системы.

Тема 4 «Динамика вращательного движения»

Уравнение вращения твердого тела вокруг закрепленной оси. Момент инерции. Формула Штейнера.

Тема 5 «Энергия»

Сила, работа и потенциальная энергия. Консервативные и неконсервативные силы. Работа и кинетическая энергия. Закон сохранения полной механической энергии в поле потенциальных сил. Кинетическая энергия вращающегося тела.

Тема 6 «Элементы механики сплошных сред»

Общие свойства жидкостей и газов. Стационарное течение идеальной жидкости. Уравнение Бернулли. Упругие напряжения и деформации в твердом теле. Закон Гука. Модуль Юнга. Коэффициент Пуассона.

Тема 7 «Релятивистская механика»

Принцип относительности и преобразования Галилея. Экспериментальные обоснования специальной теории относительности (СТО). Постулаты СТО. Относительность одновременности и преобразования Лоренца. Сокращение длины и замедление времени в движущихся системах отсчета. Релятивистский импульс. Взаимосвязь массы и энергии. СТО и ядерная энергетика.

Раздел 2 «Колебания и волны»

Тема 1 «Гармонические колебания»

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний. Энергия колебаний. Примеры колебательных движений различной физической природы. Свободные затухающие колебания осциллятора с потерями. Вынужденные колебания. Сложение колебаний (биения, фигуры Лиссажу).

Тема 2 «Волны»

Волновое движение. Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны. Одномерное волновое уравнение. Упругие волны в газах, жидкостях и твердых телах. Элементы акустики. Эффект Доплера. Поляризация волн. Раздел 3 «Молекулярная физика и термодинамика»

Тема 1 «Молекулярно-кинетическая теория» (МКТ)

Давление газа с точки зрения МКТ. Связь теплоемкости с числом степеней свободы молекул газа. Распределение Максвелла молекул идеального газа. Экспериментальное обоснование распределения Максвелла. Распределение Больцмана и барометрическая формула.

Тема 2 «Феноменологическая термодинамика»

Термодинамическое равновесие и температура. Нулевое начало термодинамики. Эмпирическая температурная шкала. Квазистатистические процессы. Уравнение состояния в термодинамике. Обратимые и необратимые процессы. Первое начало термодинамики. Теплоемкость. Уравнение Майера. Изохорический, изобарический, изотермический, адиабатический процессы в идеальных газах. Преобразование теплоты в механическую работу. Цикл Карно и его коэффициент полезного действия. Энтропия.

Тема 3 «Элементы физической кинетики»

Явление переноса. Диффузия, теплопроводность, внутреннее трение. Броуновское движение.

Раздел 4 «Электричество»

Тема 1 «Электростатика»

Закон Кулона. Напряженность и потенциал электростатического поля. Теорема Гаусса в интегральной форме и её применение для расчета электрических полей.

Тема 2 «Проводники в электрическом поле»

Равновесие зарядов в проводнике. Основная задача электростатики проводников. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками. Электростатическая защита. Ёмкость проводников и конденсаторов. Энергия заряженного конденсатора.

Тема 3 «Диэлектрики в электрическом поле»

Электрическое поле диполя. Диполь во внешнем электрическом поле. Поляризация диэлектриков. Ориентационный и деформационный механизмы поляризации. Вектор электрического смещения (электрической индукции). Диэлектрическая проницаемость вещества. Электрическое поле в однородном диэлектрике.

Тема 4 «Постоянный электрический ток»

Сила и плотность тока. Уравнение непрерывности для плотности тока. Закон Ома в интегральной и дифференциальной форме. Закон Джоуля-Ленца. Закон Видемана-Франца. Электродвижущая сила источника тока. Правила Кирхгофа. Классическая теория электропроводности металлов (теория Друде-Лоренца), условия её применимости и противоречия с экспериментальными результатами.

Раздел 5 «Квантовая теория физики твердого тела»

Тема 1 «Элементы физики твердого тела»

Структура зон в металлах, полупроводниках и диэлектриках. Проводимость металлов. Собственная и примесная проводимость полупроводников. Уровень Ферми в чистых и примесных полупроводниках. Температурная зависимость полупроводников. Контактные явления в полупроводниках. Р-п переход. Термоэлектрические явления.

Раздел 6 «Магнетизм»

Тема 1 «Магнитостатика»

Магнитное взаимодействие постоянных токов. Вектор магнитной индукции. Закон Ампера. Силе Лоренца. Движение зарядов в электрических и магнитных полях. Закон Био-Савара-Лапласа. Теорема о циркуляции (закон полного тока). Поток магнитного поля. Магнитное поле движущегося заряда. Движение заряженных частиц в электрических и магнитных полях. Эффект Холла и его применение.

Тема 2 «Магнитное поле в веществе»

Магнитное поле и магнитный дипольный момент кругового тока. Намагничивание магнетиков. Напряженность магнитного поля. Магнитная проницаемость и магнитная восприимчивость. Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики.

Тема 3 «Электромагнитная индукция»

Феноменология электромагнитной индукции. Правило Ленца. Уравнение электромагнитной индукции. Самоиндукция. Индуктивность соленоида. Работа по перемещению контура с током в магнитном поле. Энергия магнитного поля.

Тема 4 «Уравнения Максвелла»

Система уравнений Максвелла в интегральной форме и физический смысл входящих в нее уравнений.

Раздел 7 «Волновая оптика»

Тема 1 «Световая волна»

Волновое уравнение в пространстве. Плоские и сферические электромагнитные волны. Волновой вектор. Волновое уравнение для электромагнитного поля. Основные свойства электромагнитных волн. Энергетические характеристики электромагнитных волн. Вектор Пойтинга.

Тема 2 «Интерференция волн»

Интерференционное поле от двух точечных источников. Опыт Юнга. Интерферометр Майкельсона. Интерференция в тонких пленках. Стоячие волны. Основное уравнение интерференции, роль когерентности. Временная (продольная) когерентность. Пространственная (поперечная) когерентность. Многолучевая интерференция. Интерферометр Фабри-Перо.

Тема 3 «Дифракция волн»

Принцип Гюйгенса-Френеля. Дифракция Френеля на простейших преградах. Дифракция Фраунгофера. Дифракционная решетка как спектральный прибор. Понятие о голографическом методе получения и восстановления изображений. Метод зон Френеля. Амплитудные и фазовые зонные пластинки Френеля.

Тема 4 «Поляризация волн»

Форма и степень поляризации монохроматических волн. Получение и анализ линейно-поляризованного света. Линейное двулучепреломление. Прохождение света через линейные фазовые пластинки. Искусственная оптическая анизотропия. Фотоупругость. Электрооптические и магнитооптические эффекты. Отражение и преломление света на границе раздела двух диэлектриков. Формулы Френеля. Полное отражение и его применение в технике. Волноводы и световоды. Брюстеровское отражение.

Тема 5 «Поглощение и дисперсия света»

Феноменология поглощения и дисперсии света.

Раздел 8 «Квантовая оптика»

Тема 1 «Квантовые свойства электромагнитного излучения»

Тепловое излучение и люминесценция. Спектральные характеристики теплового излучения. Законы Кирхгофа, Стефана-Больцмана и закон смещения Вина. Абсолютно черное тело. Формула Релея-Джинса и «ультрафиолетовая катастрофа». Гипотеза квантов. Формула Планка. Квантовое объяснение законов теплового излучения. Корпускулярно-волновой дуализм света. Фотоэффект и эффект Комптона. Уравнение Эйнштейна для фотоэффекта.

Раздел 9 «Квантовая физика»

Тема 1 «Экспериментальные данные о структуре атомов»

Модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Ядерная модель атома. Эмпирические закономерности в атомных спектрах. Формула Бальмера.

Тема 2 «Элементы квантовой механики»

Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Дифракция микрочастиц. Принцип неопределенностей Гейзенберга. Волновая функция, её статистический смысл и условия которым она должна удовлетворять. Уравнение Шредингера. Квантовая частица в одномерной потенциальной яме. Одномерный потенциальный порог и барьер.

Тема 3 «Квантово-механическое описание атомов»

Стационарное уравнение Шредингера для атома водорода. Волновые функции и квантовые числа. Правила отбора для квантовых переходов. Опыт Штерна и Герлаха. Эффект Зеемана.

Тема 4 «Оптические квантовые генераторы»

Спонтанное и индуцированное излучение. Инверсное заселение уровней активной среды. Основные компоненты лазера. Условие усиления и генерации света. Особенности лазерного излучения. Основные типы лазеров и их применение.

Раздел 10 «Ядерная физика»

Тема 1 «Элементы квантовой микрофизики»

Состав атомного ядра. Характеристики ядра: заряд, масса, энергия связи нуклонов. Радиоактивность. Виды и законы радиоактивного излучения. Ядерные реакции. Деление ядер. Синтез ядер. Детектирование ядерных излучений. Понятие о дозиметрии и защите.

Тема 2 «Элементарные частицы»

Фундаментальные взаимодействия и основные классы элементарных частиц. Частицы и античастицы. Лептоны и адроны. Кварки. Электрослабое взаимодействие.

4.3 Лекции/лабораторные/практические занятия

Таблица 4 Содержание лекций/лабораторного практикума/практических занятий и контрольные мероприятия

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
1.	Раздел 1. «Физ	ические основы механики»			20
	Тема 1. «Ки- нематика»	Лекция №1 «Кинематика поступательного и вращательного движения»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)		2
		Практическое занятие №1 «Кинематика поступательного и вращательного движения».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	решение задач	2
		Лабораторная работа №1 Введение. Расчет погрешностей измерений.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
	Тема 2 «Ди- намика» Тема 5 «Ди- намика вра-	Лекция № 2«Динамика поступательного и вращательного движения»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)		2
	щательного движения»	Лабораторная работа №2. «Изучение законов прямолинейного движения и свободного падения на машине Атвуда»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
		Практическое занятие №2. Динамика поступательного и вра-	УК-1 (УК-1.2)	решение задач	2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
		щательного движения.	ОПК-2 (ОПК- 2.5.)		
		Лабораторная работа №3. «Изучение законов вращательного движения твердого тела».	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
	Тема 3 «Мо- мент импуль- са» Тема 5 «Энер-	Лекция № 3 «Энергия, импульс, момент импульса. Законы сохранения».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
	гия»	Практическое занятие №3. Законы сохранения в поступательном и вращательном движении	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	решение задач	2
		Лабораторная работа №4. «Центральный удар шаров»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
2.	Раздел 2. «Коло	ебания и волны»			16
	Тема 1 «Гармонические колебания»	Лекция № 4 «Гармонические колебания»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
		Практическое занятие №4. Гармонические колебания.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	решение задач	2
		Лабораторная работа №5. «Определение момента инерции тракторного шатуна» «Изучение затухающих колебаний пружинного маятника» «Изучение явления резонанса при вынужденных колебаниях математического маятника»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
		Лекция № 5 «Затухающие и вынуж- денные колебания»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5).		2
		Практическое занятие №5. Затухающие и вынужденные коле- бания.	УК-1 (УК-1.2) ОПК-2	решение задач	2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
			(ОПК- 2.5.).		
	Тема 2 «Вол- ны»	Лекция № 6 «Волны»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)		2
		Практическое занятие №6. Волны.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач	2
		Лабораторная работа №6. «Изучение поперечных колебаний упругой струны» «Определение скорости звука в воздухе методом стоячих волн в узкой трубе»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
3.	Раздел 3. «Мол	екулярная физика и термодинамика»			12
3.	Тема 1 «Мо- лекулярно- кинетическая теория» (МКТ) Тема 3 «Эле- менты физи- ческой кине-	Лекция № 7 «Молекулярно- кинетическая теория. Явление пе- реноса.»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
		Практическое занятие №7. МКТ. Уравнение состояния идеального газа.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач	2
	тики»	Лабораторная работа №7. «Определение коэффициента вязко- сти жидкости»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
	Тема 2 «Феноменологическая термодинамика»	Лекция № 8 «Основы термодинами- ки.»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
		Практическое занятие №8. Применение первого начала термодинамики к изопроцессам. Тепловые машины. Цикл Карно.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач Контроль- ная работа №1	2
		Лабораторная работа №8. «Определение коэффициента Пуассона методом адиабатического расширения»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
4.	Раздел 4 «Элек	тричество»			24

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
	Тема 1 «Электростатика»	Лекция №1 «Основы электростати- ки»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
		Практическое занятие №1. Основные характеристики электро- статического поля.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач	2
		Лабораторная работа № 1. «Изучение электростатического поля»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
	Тема 2 «Проводники в электрическом поле»	Лекция №2 «Проводники и диэлектрики в электрическом поле»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
	Тема 3 «Ди- электрики в электриче- ском поле»	Практическое занятие №2. Ёмкость проводников и конденсаторов. Энергия электростатического поля.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач	2
	Тема 4 «По- стоянный электриче- ский ток»	Лекция №3 «Постоянный электрический ток»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
	ский ток»	Лабораторная работа №2. «Измерение сопротивления с помощью мостика Уитсона	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
		Практическое занятие №3. Закон Ома в дифференциальной форме. Закон Джоуля-Ленца в дифференциальной форме. Удельная мощность тока.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач	2
		Лабораторная работа №3. «Исследование зависимости сопротивления металлического проводника от температуры»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
		Лекция №4 «Классическая теория электропроводности»	УК-1 (УК-1.2) ОПК-2		2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
			(ОПК- 2.5.).		
		Практическое занятие №4. Классическая теория электропроводности. Подвижность электронов.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач	2
		Лабораторная работа №4. «Исследование зависимости полезной мощности и коэффициента полезного действия батареи аккумуляторов от сопротивления нагрузки»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
5.		товая теория физики твердого тела»			12
	Тема 1 «Эле- менты физики твердого те- ла»	Лекция №5 «Основные принципы квантовой теории. Энергия Ферми. Основы зонной теории металлов»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
		Практическое занятие №5. Работа выхода. Энергия Ферми. Вероятность распределения электронов по энергиям.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №5. «Изучение явления термоэлектронной эмиссии с помощью электровакуумного диода» «Градуирование термопары»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
		Лекция №6 «Примесная проводимость полупроводников. Термо- электронные явления»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
		Практическое занятие №6. Собственная проводимость полупроводников. Термоэлектронная эмиссия.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №6. «Физические основы работы полупроводниковых диодов и триодов»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
6.	Раздел 6 «Магн	етизм»			12
	Тема 1 «Магнитостатика» Тема 2 «Магнитное поле в	Лекция №7 «Магнитостатика. Магнитное поле в веществе.»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
	веществе»	Практическое занятие №7 «Магни-	УК-1	решение	2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
		тостатика»	(УК-1.2) ОПК-2 (ОПК- 2.5.).	задач	
		Лабораторная работа №7. «Изменение горизонтальной составляющей напряженности магнитного поля земли с использованием тангенс-гальванометра» «Изучение устройства и работы электронного осциллографа» «Исследование намагничивания железа»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
	Тема 3 «Электромагнитная индукция» Тема 4	Лекция №8 «Электромагнитная индукция. Уравнения Максвелла. Их физическое содержание»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).		2
	«Уравнения Максвелла»	Практическое занятие №8. Явления электромагнитной индукции и самоиндукции.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.).	решение задач Контроль- ная работа №2	2
		Лабораторная работа №8. «Определение индуктивности катушки с железным сердечником и без сердечника»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.5.)	защита ла- боратор- ных работ	2
7.	Раздел 7 «Волн	овая оптика»			18
	Тема 1 «Световая волна» Тема 2 «Интерференция	Лекция №1 «Световая волна. Интерференция волн».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
	волн»	Практическое занятие №1 «Интерференция волн».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №1. «Определение радиуса кривизны линзы с помощью колец Ньютона»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
	Тема 3 «Дифракция волн»	Лекция №2 «Дифракция волн».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
		Практическое занятие №2 Дифракция.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №2. «Определение длины световой волны с помощью дифракционной решетки»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
	Тема 4 «По- ляризация волн» Тема 5 «По-	Лекция № 3 «Поляризация волн. Поглощение и дисперсия света».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
	глощение и дисперсия света»	Практическое занятие №3. Поляризация.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №3. «Определение концентрации сахарного раствора с помощью полутеневого сахариметра»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
8.	Раздел 8 «Кван	товая оптика»	,		14
	Тема 1 «Квантовые свойства электромагнитного	Лекция №4 «Тепловое излучение.».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.2.).		2
	излучения»	Практическое занятие №4. Тепловое излучение.	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №4. «Экспериментальное определение постоянной в законе Стефана-Больцмана при помощи оптического пирометра»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
		Лекция №5 «Фотоэффект».	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
		Практическое занятие №5. Законы фотоэффекта.	УК-1 (УК-1.2) ОПК-2	решение задач	2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
			(ОПК- 2.6.).		
		Лабораторная работа №5. «Фотоэлектрический эффект»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
		Лабораторная работа №6. Защита лабораторных работ	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
	Раздел 9 «Кван	товая физика»			12
	Тема 1 «Экс- перименталь- ные данные о структуре	Лекция №6 «Экспериментальные данные о структуре атомов. Элементы квантовой механики.»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
	атомов» Тема 2 «Эле- менты кван- товой меха- ники»	Практическое занятие №6 «Строение атома. Элементы квантовой механики»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №7. «Изучение спектров излучения газообразных веществ и определение длины монохроматической волны с помощью спектроскопа»	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
	Тема 3 «Квантовомеханическое описание	Лекция №7 «Квантовая физика атомов и молекул. Уравнение Шредингера.»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).		2
	атомов»	Практическое занятие №7 «Частица в потенциальной яме.»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач	2
		Лабораторная работа №8 Защита лабораторных работ	УК-3. (УК-3.2) УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.)	защита ла- боратор- ных работ	2
	Раздел 10 «Яде	рная физика»			4
	Тема 1 «Эле- менты кван- товой микро-	Лекция №8 «Ядро и ядерные реакции. Элементарные частицы»	УК-1 (УК-1.2) ОПК-2		2

№ п/п	Название раз- дела, темы	№ и название лекций/ лабораторных/ практических занятий	Формируем ые компетенции (индикаторы достижения компетенции)	Вид контрольно го мероприят ия	Кол -во ча- сов
	физики»		(ОПК- 2.6.).		
	Тема 2 «Элементарные частицы»	Практическое занятие № 8 «Ядро и ядерные реакции. Элементарные частицы»	УК-1 (УК-1.2) ОПК-2 (ОПК- 2.6.).	решение задач. Контроль- ная работа №3	2

 Таблица 5

 Перечень вопросов для самостоятельного изучения дисциплины

No	Название раздела, те-	Перечень рассматриваемых вопросов для самостоятельного		
п/п	МЫ	изучения		
Разд	ел 1 «Физические основ	вы механики»		
1.	Тема 2 «Динамика»	Центр масс механической системы, закон движения центра масс. Движение тел с переменной массой. (УК-1(УК-1.2); ОПК-2(ОПК- 2.5))		
2.	Тема 6 «Элементы механики сплошных сред»	Общие свойства жидкостей и газов. Стационарное течение идеальной жидкости. Уравнение Бернулли. Упругие напряжения и деформации в твердом теле. Закон Гука. Модуль Юнга. Коэффициент Пуассона. (УК-1(УК-1.2); ОПК-2(ОПК- 2.5))		
3.	Тема 7 «Релятивист- ская механика»	Принцип относительности и преобразования Галилея. Экспериментальные обоснования специальной теории относительности (СТО). Постулаты СТО. Относительность одновременности и преобразования Лоренца. Сокращение длины и замедление времени в движущихся системах отсчета. Релятивистский импульс. Взаимосвязь массы и энергии. СТО и ядерная энергетика (УК-1(УК-1.2); ОПК-2(ОПК-2.5))		
Разд	ел 2 «Колебания и волн	PI»		
1.	Тема 1 «Гармониче- ские колебания»	Сложение колебаний (биения, фигуры Лиссажу). (УК-1(УК-1.2); ОПК-2(ОПК- 2.5))		
2.	Тема 2 «Волны»	Элементы акустики. Эффект Доплера. Поляризация волн. (УК-1(УК-1.2); ОПК-2(ОПК-2.5))		
Разд	ел 3. «Молекулярная фи	изика и термодинамика»		
1.	Тема 1 «МКТ»	Определение числа Авогадро методом Перрена. (УК-1(УК-1.2); ОПК-2(ОПК- 2.5))		
Разд	ел 4 «Электричество»			
1.	Тема 4 «Постоянный электрический ток»	Уравнение непрерывности для плотности тока. (УК-1(УК-1.2); ОПК-2(ОПК- 2.5))		
Разд	Раздел 5 «Квантовая теория физики твердого тела»			
1.	Тема 1 «Элементы физики твердого тела	Собственная и примесная проводимость полупроводников. Р-п переход. Полупроводниковые триоды (УК-1(УК-1.2); ОПК-2(ОПК- 2.5))		
Разд	ел 6 «Магнетизм»			
1.	Тема 1 «Магнитоста- тика»	Эффект Холла и его применение. (УК-1(УК-1.2); ОПК-2(ОПК-2.5))		

N₂	Название раздела, те-	Перечень рассматриваемых вопросов для самостоятельного
п/п	пазвание раздела, те- МЫ	изучения
-	ел 7 «Волновая оптика»	
1.	Тема 2 «Интерферен-	Интерферометр Майкельсона.
1.	ция волн»	Многолучевая интерференция. Интерферометр Фабри-Перо.
	ции волии	(УК-1(УК-1.2); ОПК-2(ОПК- 2.6)))
2.	Тема 3 «Дифракция	Понятие о голографическом методе получения и восстановле-
	ВОЛН≫	ния изображений. (УК-1(УК-1.2); ОПК-2(ОПК- 2.6))
3.	Тема 4 «Поляризация	Волноводы и световоды. (УК-1.2; ОПК- 2.6)
	волн»	
Разд	ел 8 «Квантовая оптика	»
1.	Тема 1 «Квантовые	Ультрафиолетовая катастрофа. (УК-1(УК-1.2); ОПК-2(ОПК-
	свойства электромаг-	2.6))
	нитного излучения»	
Разд	(ел 9 «Квантовая физика	»>
1.	Тема 3 «Квантово-	Правила отбора для квантовых переходов. Опыт Штерна и Гер-
	механическое описа-	лаха. Эффект Зеемана. (УК-1(УК-1.2); ОПК-2(ОПК- 2.6))
	ние атомов»	
2.	Тема 4 «Оптические	Спонтанное и индуцированное излучение. Инверсное заселение
	квантовые генерато-	уровней активной среды. Основные компоненты лазера. Усло-
	ры»	вие усиления и генерации света. Особенности лазерного излу-
		чения. Основные типы лазеров и их применение(УК-1(УК-1.2);
		ОПК-2(ОПК- 2.6))
	ел 10 «Ядерная физика»	
1.	Тема 1 «Элементы	Детектирование ядерных излучений. Понятие о дозиметрии и
	квантовой микрофи-	защите. (УК-1(УК-1.2); ОПК-2(ОПК- 2.6))
	зики»	
2.	Тема 2 «Элементар-	Фундаментальные взаимодействия и основные классы элемен-
	ные частицы»	тарных частиц. Частицы и античастицы. Лептоны и адроны.
		Кварки. Электрослабое взаимодействие. (УК-1(УК-1.2); ОПК-2(ОПК-2.6))
		2(OΠK- 2.6))

5. Образовательные технологии

Таблица 6

Применение активных и интерактивных образовательных технологий

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий
Разд	Раздел 1. «Физические основы механики»		
1.	Тема 1. «Кинематика» ЛР		Работа в ма-
	«Расчет погрешностей измерений»		лых группах
2.	Тема 2 «Динамика» ЛР		Работа в ма-
	«Изучение законов прямолинейного движения и свободного па-		лых группах
	дения на машине Атвуда.»		
3.	Тема 4 «Динамика вращательного движения»	ЛР	Работа в ма-

№ п/п	Тема и форма занятия		Наименова- ние исполь- зуемых ак- тивных и ин- терактивных образователь-
			ных техноло- гий
	«Изучение законов вращательного движения твердого тела».		лых группах
4.	Тема 3 «Энергия» Тема 5 «Момент импульса»	ЛР	Работа в ма-
7.	«Центральный удар шаров»	711	лых группах
Разл	цел 2. «Колебания и волны»		зых труппах
5.	Тема 1 «Гармонические колебания»	ЛР	Работа в ма-
] 3.	«Определение момента инерции тракторного шатуна»	711	лых группах
	«Изучение затухающих колебаний пружинного маятника»		лых группах
	«Изучение затухающих колеоании пружинного маятника» «Изучение явления резонанса при вынужденных колебаниях		
	математического маятника»		
6.	тема 2 «Волны»	ЛР	Работа в ма-
0.	тема 2 «Волны» «Изучение поперечных колебаний упругой струны»	711	лых группах
	«Определение скорости звука в воздухе методом стоячих волн в		лых группах
	«Определение скорости звука в воздухе методом стоячих волн в узкой трубе»		
Door	узкой трубс» (ел 3. «Молекулярная физика и термодинамика»		
7.	Тема 2 «Термодинамика» Тема 3 «Явления переноса»	ЛР	Работа в ма-
7.	чема 2 «Термодинамика» тема 3 «лвления переноса» «Определение коэффициента Пуассона методом адиабатическо-	ЛГ	
	«Определение коэффициента туассона методом адиаоатическо- го расширения»		лых группах
	то расширения» «Определение коэффициента вязкости жидкости»		
Door	«Определение коэффициента вязкости жидкости» (ел 4. «Электричество»		
8.	Тема 1 «Основы электростатики»	ЛР	Работа в ма-
0.	чема т «Основы электростатики» «Изучение электростатического поля»	ЛГ	
9.	Тема 4 «Постоянный электрический ток»	ЛР	лых группах Работа в ма-
9.		JIF	
	«Измерение сопротивления с помощью мостика Уитсона»		лых группах
	«Исследование зависимости сопротивления металлического		
	проводника от температуры»		
	«Исследование зависимости полезной мощности и коэффициен-		
	та полезного действия батареи аккумуляторов от сопротивления нагрузки»		
Dana	1.0		
	ел 5 «Квантовая теория физики твердого тела»	пр	Работа в ма-
10.	Tema 1 «Элементы физики твердого тела» «Изучение явления термоэлектронной эмиссии с помощью	ЛР	
	«изучение явления термоэлектронной эмиссий с помощью электровакуумного диода»		лых группах
	электровакуумного диода» «Градуирование термопары»		
	«п радуирование термопары» «Физические основы работы полупроводниковых диодов и		
	· · · · · · · · · · · · · · · · · · ·		
Dear	триодов» (ел 6 «Магнетизм»		
11.	Тема 1 «Магнитостатика».	ЛР	Работа в ма-
11.	тема т «магнитостатика». «Изменение горизонтальной составляющей напряженности	711	
	магнитного поля земли с использованием тангенс-		лых группах
	магнитного поля земли с использованием тангенс- гальванометра»		
	тальванометра» «Изучение устройства и работы электронного осциллографа»		
12.	Тема 2 «Магнитное поле в веществе»	ЛР	Работа в ма-
12.	·	711	
13.	«Исследование намагничивания железа»	ЛР	лых группах
13.	Тема 3 «Электромагнитная индукция»	1117	Работа в ма-
<u></u>	«Определение индуктивности катушки с железным сердечни-		лых группах

№ п/п	Тема и форма занятия		Наименование используемых активных и интерактивных образовательных технологий		
	ком и без сердечника»				
	ел 7 «Волновая оптика»	1	•		
14.	Тема 1 «Геометрическая оптика» Тема 2 «Интерференция	ЛР	Работа в ма-		
	волн»		лых группах		
	«Определение радиуса кривизны линзы с помощью колец Нью-				
	тона»				
15.	Тема 3 «Дифракция волн»	ЛР	Работа в ма-		
	«Определение длины световой волны с помощью дифракцион-		лых группах		
	ной решетки»				
16.	Тема 4 «Поляризация волн»	ЛР	Работа в ма-		
	«Определение концентрации сахарного раствора с помощью		лых группах		
	полутеневого сахариметра»				
Разд	ел 8 «Квантовая оптика»				
17.	Тема 5 «Квантовые свойства электромагнитного излучения»	ЛР	Работа в ма-		
	«Экспериментальное определение постоянной в законе Стефа-		лых группах		
	на-Больцмана при помощи оптического пирометра»				
	«Фотоэлектрический эффект»				
Разд	Раздел 9 «Квантовая физика»				
18.	Тема 1 «Строение атома» Тема 2 «Элементы квантовой меха-	ЛР	Работа в ма-		
	ники»		лых группах		
	«Изучение спектров излучения газообразных веществ и опреде-				
	ление длины монохроматической волны с помощью спектро-				
	скопа»				

6. Текущий контроль успеваемости и промежуточная аттестация по итогам освоения дисциплины

- 6.1. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений и навыков и (или) опыта деятельности
- 1) Вопросы для подготовки к контрольным мероприятиям (текущий контроль)

Типовые задачи для контроля на практических занятиях, защиты лабораторной работы, для экзамена или зачета с оценкой.

Пример типовых задач для текущего контроля знаний обучающихся

Типовые задачи по разделу 1 «Физические основы механики». **Тема 1** «Кинематика» **Практическое занятие №1**. «Кинематика поступательного движения». Решение задач по кинематике

- 1. Материальная точка движется в пространстве согласно уравнениям: X(t) = 5t (M), $Y(t) = 4 2t^2$ (M), $Z(t) = 3t 4t^3$ (M). Найти модули скорости и ускорения точки в момент времени t = 1 c.
- 2. Какой угол составляет вектор полного ускорения точки, лежащей на ободе маховика, с радиусом маховика через t = 1.5 c после начала движения? Угловое ускорение маховика $\varepsilon = 0.77 \ pad/c^2$.
- 3. Колесо вращается с постоянным угловым ускорением ε =2рад/c2. Через время t=0.5с после начала движения полное ускорение колеса стало a=13,6см/c2. Найдите радиус колеса.

Пример типового варианта контрольной работы для текущего контроля знаний обучающихся

Типовой вариант контрольной работы №1 (разделы 1-3, семестр 2)

- 1.При горизонтальном полете со скоростью v = 250 м/с снаряд массой m = 8 кг разорвался на две части. Большая часть массой $m_1 = 6$ кг получила скорость $v_1 = 400$ м/с в направлении полета снаряда. Определить модуль и направление скорости v_2 меньшей части снаряда.
- 2. На скамье Жуковского сидит человек и держит на вытянутых руках гири массой m=5 кг каждая. Расстояние от каждой гири до оси скамьи 1=70 см. Скамья вращается с частотой $n_1=1c^{-1}$. Как изменится частота вращения скамьи, если он сожмет руки так, что расстояние от каждой гири до оси уменьшится до $l_2=20$ см? Момент инерции человека и скамьи (вместе) относительно оси J=2,5 кг·м².
- 3. Кинематическое уравнение колебаний материальной точки имеет вид: $x=0,2e^{-0,1t}\cos 0,2t$, м. Чему равны коэффициент затухания и частота затухающих колебаний? Вычислите логарифмический декремент затухания и частоту свободных незатухающих колебаний ω_0 для этой системы.
- 4. Плоская волна распространяется вдоль оси х. Уравнение волны имеет вид ξ =2cos(25 π t-20 π x). Вычислите разность фаз колебаний точек, имеющих координаты x_1 =4,00м и x_2 =4,50м.
- 5. Определить количество теплоты Q, которое надо сообщить кислороду объемом V=50 л при его изохорном нагревании, чтобы давление газа повысилось на $\Delta p=0,5$ МПа.

Типовой вариант контрольной работы №2 (разделы 4 - 6, семестр 3)

- 1. Тонкий проводник, заряженный равномерно с линейной плотностью зарядов 5нКл/м, образует кольцо радиусом 8см. Определить напряженность электрического поля кольца в точке, лежащей на перпендикуляре к его плоскости на расстоянии 10см от его центра. Среда вакуум.
- 2. Конденсатор имеет энергию W_1 =4Дж при напряжении между его обкладками U_1 =2000В. Какой заряд q_2 будет находится на обкладках этого конденсатора при напряжении между ними U2=500В.
- 3. Ток в проводнике меняется со временем t по уравнению I=4+2t, где I-в амперах, t-в секундах. Какое количество электричества q проходит через поперечное сечение проводника за время от $t_1=2c$ до $t_2=6c$? При каком постоянном токе I_0 через поперечное сечение проводника за то же время проходит такое же количество электричества?
- 4. Пылинка массой m=200 мкг, несущая на себе заряд Q=40 нКл, влетела в электрическое поле в направлении силовых линий. После прохождения разности потенциалов U=200~B пылинка имела скорость v=10 м/с. Определить скорость v_0 пылинки до того, как она влетела в поле.
- 5. Какая температура соответствует средней кинетической энергии электронов, равной работе выхода из лития, если поверхностный скачок потенциала у лития равен 2,4В?

Типовой вариант контрольной работы №3 (разделы 7 - 10, семестр 4)

1. На поверхность кварцевой (n = 1,56) пластины нанесена плоскопараллельная пленка толщиной 1,0мкм и показателем преломления n = 1,34. От рассеянного источника на плёнку падает жёлтый свет длиной волны 0,58мкм. При каких углах падения света на плёнку будут наблюдаться максимумы в отражённом свете?

- 2. Параллельный пучок света с длиной волны 0,6мкм падает на плоскую диафрагму с отверстием радиусом 2,2мм. Светлое или тёмное пятно будет в центре дифракционной картины на экране, расположенном на расстоянии b=2м от диафрагмы?
- 3. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол γ между падающим и преломленным пучками.
- 4. Черное тело имеет температуру $T_1 = 500$ К. Какова будет температура T_2 тела, если в результате нагревания поток излучения увеличится в n = 5 раз?
- 5. Определить, какая доля радиоактивного изотопа ^{225}Ac распадается в течение времени t=6 суток.

Пример типовых контрольных вопросов при защите лабораторных работ для текущего контроля знаний обучающихся.

По Разделу 4 «Электричество». Тема 1 «Электростатика»

Задания и контрольные вопросы при защите

Лабораторной работы №1. «Изучение электростатического поля».

Вопросы для защиты.

- 1. Свойства зарядов. Закон сохранения зарядов. Закон кратности электрических зарядов элементарному заряду. Закон Кулона.
- 2. Электрическое поле, напряженность электрического поля. Принцип суперпозиции. Силовые линии.
- 3. Потенциальный характер электрического поля. Потенциал электрического поля. Эквипотенциальные поверхности.
 - 4. Связь между потенциалом и напряженностью поля.
 - 5. Вектор электрической индукции, его связь с напряженностью поля.
- 6. Поток вектора напряженности электрического поля. Теорема Остроградского Гаусса.
- 7. Применить теорему Остроградского Гаусса для определения напряженностей полей в частных случаях.
 - 8. Проводники и диэлектрики в электрическом поле.
- 9. Потенциальная энергия двух точечных электрических зарядов, системы зарядов. Энергия электрического поля.
- 10. Электрическая емкость уединенного проводника. Конденсаторы. Электрическая емкость конденсатора.

2) Перечень вопросов, выносимых на промежуточную аттестацию (зачет с оценкой/экзамен)

Вопросы к экзамену (2 семестр)

Раздел 1 «Физические основы механики»

- 1. Предмет физики. Методы физического исследования. Роль физики в развитии техники и влияние техники на развитие физики.
- 2. Механическое движение как простейшая форма движения материи. Классическая механика. Пространство и время в классической механике. Физические модели.
- 3. Кинематическое описание движения точки. Скорость и ускорение при криволинейном движении. Нормальное и касательное (тангенциальное) ускорения.
- 4. Движение точки по окружности. Векторы угловой скорости и углового ускорения. Связь линейных скоростей и ускорений с угловыми скоростями и ускорениями.

- 5. Динамика. Механическая система. Сила. Масса и импульс. Современная трактовка законов Ньютона. Силы в механике.
- 6. Импульс системы материальных точек. Закон сохранения импульса.
- 7. Обобщенная формулировка II закона Ньютона. Закон всемирного тяготения. Центр масс механической системы, закон движения центра масс. Движение тел с переменной массой.
- 8. Энергия как универсальная мера различных форм движения и взаимодействия. Работа силы. Консервативные и неконсервативные силы. Мощность.
- 9. Кинетическая энергия механической системы. Потенциальная энергия.
- 10. Закон сохранения энергии в механике. Удары.
- 11. Момент инерции. Теорема Штейнера.
- 12. Момент силы. Основное уравнение динамики вращательного движения твердого тела.
- 13. Кинетическая энергия вращающегося и катящегося твердого тела. Работа при вращательном лвижении.
- 14. Момент импульса материальной точки, механической системы и тела. Закон сохранения момента импульса.
- 15. Основное уравнение динамики вращательного движения твердого тела в обобщенном виде. Закон сохранения момента импульса.
- 16. Деформация в твердом теле. Закон Гука.

Раздел 2 «Колебания и волны»

- 17. Классификация колебаний. Уравнение гармонических колебаний. Механические колебания. Энергия колебаний. Дифференциальное уравнение гармонических колебаний.
- 18. Маятники.
- 19. Свободные затухающие колебания.
- 20. Вынужденные колебания. Резонанс.
- 21. Волновое движение. Плоская гармоническая волна. Длина волны, волновое число, фазовая скорость. Уравнение волны.
- 22. Стоячие волны. Уравнение стоячей волны.

Раздел 3 «Молекулярная физика и термодинамика»

- 23. Статистический и термодинамический методы исследования. Основное уравнение молекулярно-кинетической теории идеальных газов. Температурная шкала Цельсия и Кельвина
- 24. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры.
- 25. Распределение Максвелла молекул идеального газа.
- 26. Распределение Больцмана и барометрическая формула.
- 27. Эффективный диаметр молекулы. Среднее число столкновений и средняя длина свободного пробега.
- 28. Термодинамические параметры. Термодинамическое равновесие и процесс. Уравнение состояния идеального газа. Изопроцессы.
- 29. Первое начало термодинамики. Работа газа. Теплообмен, количество теплоты. Внутренняя энергия идеального газа. Число степеней свободы.
- 30. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс.
- 31. Теплоемкость. Уравнение Майера. Коэффициент Пуассона. Политропный процесс.
- 32. Циклы. Термический КПД цикла. Тепловые двигатели, холодильные машины. Теорема Карно. Цикл Карно и его к.п.д. Второе начало термодинамики.
- 33. Обратимые и необратимые процессы. Энтропия. Неравенство Клаузиуса. Определение энтропии равновесной системы через термодинамическую вероятность макросистемы.
- 34. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы.
- 35. Явление переноса. Диффузия, теплопроводность, внутреннее трение.

Вопросы к зачету с оценкой (3 семестр)

Раздел 4 «Электричество»

- 36. Электрические заряды. Закон сохранения зарядов. Взаимодействие зарядов. Закон Кулона.
- 37. Электростатическое поле, его характеристики. Эквипотенциальные поверхности и силовые линии электростатического поля. Принцип суперпозиции полей.
- 38. Поток вектора напряженности электростатического поля. Теорема Гаусса (для вакуума).
- 39. Потенциальный характер электростатического поля. Понятие потенциала. Расчет работы при перемещении заряда в электростатическом поле. Циркуляция вектора Е электростатического поля.
- 40. Определение разности потенциалов в электростатическом поле. Связь напряженности и потенциала. Градиент потенциала.
- 41. Проводники в электростатическом поле. Равновесие зарядов в проводнике. Ёмкость проводников.
- 42. Емкость конденсаторов. Соединения конденсаторов. Энергия заряженного конденсатора.
- 43. Энергия электростатического поля. Объемная плотность энергии поля.
- 44. Типы диэлектриков. Поляризация диэлектриков и ее виды. Поляризованность диэлектриков. Диэлектрическая восприимчивость и проницаемость. Вектор электрического смещения
- 45. Свободные и связанные заряды. Теорема Гаусса для поля в диэлектрике. Электрическое поле в однородном диэлектрике.
- 46. Постоянный электрический ток, условия его существования и основные характеристики. Сторонние силы. Понятие ЭДС и напряжения.
- 47. Сопротивление проводника. Соединения проводников. Температурная зависимость сопротивления и ее качественное объяснение. Сверхпроводимость.
- 48. Закон Ома в интегральной форме для однородного и неоднородного участков цепи, для полной цепи.
- 49. Правила Кирхгофа.
- 50. Закон Джоуля Ленца в интегральной форме. Мощность тока.
- 51. Закон Ома и Джоуля Ленца в дифференциальной форме.
- 52. Электрический ток в металлах. Классическая теория электропроводности. Ток в вакууме. Эмиссия электронов. Газовые разряды.

Раздел 5 «Квантовая теория физики твердого тела»

- 53. Полупроводники.
- 54. Зонная теория твердого тела.
- 55. Собственная и примесная проводимость полупроводников. Диод.
- 56. Термоэлектронная эмиссия.
- 57. Внутренняя и внешняя разность потенциалов.
- 58. Термоэлектрические явления.

Раздел 6 «Магнетизм»

- 59. Магнитное поле и его характеристики. Макро- и микротоки. Воздействие магнитного поля на рамку с током и на прямолинейный проводник с током.
- 60. Силовые линии магнитной индукции. Силовая картина магнитного поля прямолинейного проводника с током и кругового витка. Принцип суперпозиции магнитных полей.
- 61. Закон Био Савара Лапласа и его применение.
- 62. Воздействие магнитного поля на движущийся заряд. Сила Лоренца. Движение заряда в магнитном поле. Эффект Холла.
- 63. Вихревой характер магнитного поля. Теорема Гаусса и теорема о циркуляции вектора магнитной индукции (в вакууме).
- 64. Намагничивание магнетиков. Напряженность магнитного поля. Магнитная проницаемость и магнитная восприимчивость.
- 65. Диамагнетики, парамагнетики и ферромагнетики.
- 66. Связь векторов В и Н. Закон полного тока для магнитного поля в веществе. Теорема о циркуляции вектора Н.

- 67. Явление электромагнитной индукции. Закон Фарадея и правило Ленца. ЭДС индукции в подвижных и неподвижных проводниках. Вращение рамки в магнитном поле. Токи Фуко.
- 68. Самоиндукция. Индуктивность проводника. Взаимная индукция. Трансформаторы.
- 69. Работа по перемещению проводника с током в магнитном поле. Энергия магнитного поля в соленоиде. Плотность энергии магнитного поля.
- 70. Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла в интегральной форме.
- 71. Колебательный контур. Преобразование энергии на различных этапах колебания. Дифференциальные уравнения свободных незатухающих и затухающих колебаний в нем и их решения.
- 72. Дифференциальное уравнение электромагнитной волны и его решение. Скорость распространения волны. Вектор Умова-Пойтинга. Энергетические характеристики электромагнитных волн. Шкала электромагнитных волн.

Вопросы к экзамену (4 семестр)

Раздел 7 «Волновая оптика»

- 73. Оптика. Законы геометрической оптики. Полное внутреннее отражение.
- 74. Интерференция света. Условия возникновения интерференции. Метод векторной диаграммы для сложения двух или нескольких волн.
- 75. Принцип получения интерфереционной картины. Условия максимумов и минимумов. Разность фаз и разность хода.
- 76. Интерференция в тонкой пленке. Кольца Ньютона.
- 77. Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля.
- 78. Дифракция на круглом отверстии. Дифракция на длинной щели.
- 79. Дифракционная решетка. Главные максимумы. Главные минимумы. Разрешающая способность.
- 80. Поляризованный свет. Виды поляризации. Способы получения поляризованного света.
- 81. Закон Малюса.
- 82. Прохождение естественного света через поляризатор и анализатор. Поворот плоскости поляризации.
- 83. Поляризация света при отражении и преломлении на границе диэлектриков. Закон Брюстера. Двойное лучепреломление.

Раздел 8 «Квантовая оптика»

- 84. Корпускулярно-волновой дуализм света. Квант света. Энергия и импульс фотона.
- 85. Внешний фотоэффект. Законы внешнего фотоэффекта.
- 86. Световое давление. Опыты Лебедева. Эффект Комптона.
- 87. Тепловое излучение. Закон Кирхгофа. Абсолютно черное тело.
- 88. Закон Стефана-Больцмана. Закон смещения Вина.
- 89. Тепловое излучение. Формула Планка. Распределение энергии в спектре излучения по частоте и длине волны.

Раздел 9 «Квантовая физика»

- 90. Модель атома Томсона и Резерфорда-Бора. Опыты Резерфорда по рассеянию альфачастиц. Эмпирические закономерности в атомных спектрах. Теория Бора.
- 91. Уровни энергии атома водорода. Квантовые числа: главное, орбитальное, магнитное, спиновое.
- 92. Волновые свойства микрочастиц. Длина волны де Бройля и ее свойства. Волновая функция.
- 93. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера.

Раздел 10 «Ядерная физика»

- 94. Состав атомного ядра. Характеристики ядра. Ядерные силы. Энергия связи ядра. Дефект масс. Энергетический эффект ядерной реакции.
- 95. Радиоактивное излучение и его виды. Закон радиоактивного распада. Ядерные реакции.

Деление ядер. Синтез ядер. Понятие о дозиметрии и защите. 96. Основные классы элементарных частиц.

6.2. Описание показателей и критериев контроля успеваемости, описание шкал оценивания

Для оценки знаний, умений, навыков и формирования компетенции по дисциплине применяется **традиционна**я система контроля и оценки успеваемости студентов. При использовании традиционной системы контроля и оценки успеваемости студентов критерии выставления оценок по четырехбалльной системе «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» либо «зачет», «незачет».

На экзамене студент отвечает на один теоретический вопрос и решает две задачи, включенные в билет. На зачете с оценкой студент отвечает на один теоретический вопрос и решает две задачи. Билет, вопрос и задачи студент выбирает случайно из комплекта предлагаемых ему соответствующих материалов.

Критерии оценивания результатов обучения для сдачи экзамена

Таблица 7

	те
Оценка	Критерии оценивания
Отлично	если в логически выстроенном ответе на вопрос правильно ука-
	заны все необходимые физические законы и определения с по-
	яснениями, правильно описаны явления, представлен вывод ос-
	новных формул в соответствии с изложенным лекционным ма-
	териалом и правильно решены обе задачи.
Хорошо	выставляется студенту, если в ответе указаны все необходимые физические законы и определения с пояснениями, описаны явления, но в пояснениях к физическим законам и определениям содержатся неточности и (или) явления описаны с ошибкой и (или) не представлен вывод основных формул в соответствии с изложенным лекционным материалом, или допущены ошибки при решении одной задачи, при этом вторая задача решена правильно.
Удовлетворительно	выставляется студенту, если в ответе указаны только необходимые физические законы, определения без пояснений (или в пояснениях содержатся ошибки) и (или) при описании явления допущены ошибки (или описание отсутствует) и решена одна задача.
Неудовлетворительно	ответ не содержит основной понятийный аппарат по теме вопроса, и обе задачи решены неверно или решение отсутствует.

Критерии оценивания результатов обучения для получения зачета с оценкой.

Таблина 8

Оценка Критерии оценивания	
Высокиий уровень «5»	оценку «отлично» заслуживает студент, освоивший знания, умения,
(отлично) (зачет)	компетенции и теоретический материал без пробелов; выполнив-
	ший все задания, предусмотренные учебным планом на высоком

	качественном уровне; практические навыки профессионального применения освоенных знаний сформированы.
Средний уровень «4» (хорошо) (зачет)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки.
Пороговый уровень	оценку «удовлетворительно» заслуживает студент, частично с про-
«3» (удовлетворитель-	белами освоивший знания, умения, компетенции и теоретический
но) (зачет)	материал, многие учебные задания либо не выполнил, либо они
	оценены числом баллов близким к минимальному, некоторые прак-
	тические навыки не сформированы.
Минимальный уро-	оценку «неудовлетворительно» заслуживает студент, не освоивший
вень «2» (неудовле-	знания, умения, компетенции и теоретический материал, учебные
творительно) (незачет)	задания не выполнил, практические навыки не сформированы.

Критерии оценки вопросов для защиты лабораторных работ:

- «зачет» выставляется студенту, если в ответе на вопрос правильно указаны все необходимые физические законы и определения с пояснениями, правильно описаны явления или в ответе содержатся незначительные неточности;
- «незачет» ответ не содержит основной понятийный аппарат по теме вопроса Для допуска к экзамену или зачету с оценкой студент обязан защитить все выполненные лабораторные работы на оценку «зачет».

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Основная литература

- 1. Савельев И.В. Курс физики: учеб. пособие в 3 томах. 1 том: Механика. Молекулярная физика.: С.-Петербург Мифрил, 1996 304с.
- 2. Савельев И.В. Курс физики: учеб. пособие в 3 томах. 2 том: Электричество. Колебания и волны. Волновая оптика. С.-Петербург, Лань, 2008г. 468с.
- 3. Савельев И.В. Курс физики: учеб. пособие в 3 томах. 3 том: М. Наука, Лань, 1989г. 320с.

7.2 Дополнительная литература

- 1. Трофимова Т.И. Курс физики: М. Издательский центр «Академия», $2017\Gamma-560c$.
- 2. Трофимова Т.И. Сборник задач по курсу физики: ООО Издательский дом «Оникс 21 век», 2003г. 384с.
- 3. Детлаф А.А. Курс физики: М. Высшая школа, 2002г 719с.

7.3 Нормативные правовые акты

Не предусмотрено.

7.4 Методические указания, рекомендации и другие материалы к занятиям

Для проведения лабораторных работ рекомендуется использовать методические указания:

- 1. Дмитриев Г. В., Попов А.И., Челноков Б.И. Механика часть І: методические указания по выполнению лабораторных работ. М.: РГАУ–МСХА имени К.А. Тимирязева, 2016. 44с.
- 2. Ершов А. П., Николаев С.Н., Туркина Е.А. Механика. Часть II: методические указания по выполнению лабораторных работ. М.: РГАУ—МСХА имени К.А. Тимирязева, 2016. 48с.
- 3. Быстров Г. С., Ершов А. П., Храмшина Э. В. Электричество. Методические указания к лабораторным работам. Ч. І. М.: ВНИИГиМ имени А.Н.Костякова, 2016. –48с.
- 4. Быстров Г. С., Николаев С.Н., Храмшина Э. В. Электромагнетизм. Методические указания к лабораторным работам по физике. Ч. II. М.: ВНИИГиМ имени А.Н.Костякова, 2016. 60с.
- 5. Дмитриев Г. В., Попов А.И., Челноков Б. И. Оптика и атомная физика: методические указания по выполнению лабораторных работ М.: РГАУ— МСХА имени К.А. Тимирязева, 2016. 52с.
 - 8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

Не предусмотрено

9. Перечень программного обеспечения и информационных справочных систем

Не предусмотрено

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Таблица 10

Сведения об обеспеченности специализированными аудиториями, кабинетами, лабораториями

Наименование специальных [*] помещений и помещений для самостоятельной работы (№ учебного корпуса, № аудитории)	Оснащенность специальных помещений и по- мещений для самостоятельной работы**
1	2
Учебная лаборатория	1. Стол 21 шт.
(Учебный корпус № 28 ауд. 301а)	2. Стулья 39 шт.
	3. Доска меловая 1 шт.
	4. Шкафы 2 шт.
	5. Типовой комплект оборудования лаборатории «Молекулярная
	физика и термодинамика» 1 шт. (инв.№410124000603107)
	6. Типовой комплект оборудования лаборатории «Физические
	основы механики» 1 шт. (инв. №410124000603116)
	7. Комплект приборов по физике 1 шт. (инв.№ 41013400000312)
	8. Лабораторный комплекс ЛКМ-6 (вращательное движение) 1

	шт. (инв.№ 410124000602815)
	Лабораторный комплекс ЛКТ-9 «Основы молекулярной физики и термодинамики» 1 шт. (инв.№ 410124000602810)
Учебная аудитория для проведения занятий семинар-	1. Парты 23 шт.
ского типа	2. Стулья 1шт.
(Учебный корпус № 28 ауд. 301б)	3. Столы 2 шт.
	4. Доска меловая 1шт.5. Шкафы 1 шт.
Учебная лаборатория	5. Шкафы 1 шт. 1. Столы 20 шт.
Учеоная лаооратория (Учебный корпус № 28 ауд. 302)	2. Стулья 29 шт.
(5 leonism Rophye 3/2 20 dyd. 302)	3. Доска меловая 1 шт.
	4. Шкафы 1 шт.
	5. Вольтметр В7-21А 1 шт. (инв.№41013400000294).
	6. Типовой комплект оборудования лаборатории «Волновые
	процессы» 1 шт. (инв.№ 410124000603118)
	7. Типовой комплект оборудования лаборатории «Электричество
37 C	и магнетизм» 1 шт. (инв.№ 410124000603235)
Учебная аудитория для проведения занятий лекцион-	1. Стол 1 шт.
ного типа (Учебный корпус № 28 ауд. 304)	 Стулья 1шт. Доска меловая 2 шт.
(9 чеоный корпус № 26 ауд. 504)	 доска меловая 2 шт. Кафедра 1 шт.
	5. Акустическая система двухполосная пассивная 2 шт.
	(инв.№410134000000991, 410134000000992)
	6. Микрофон конденсаторный SHM 205A на гусиной шее 2 шт.
	(инв.№41034000000987, 41034000000987)
	7. Hoyтбук ACER E-Mashines e-430-102G16Mi FMD M100 1 шт.
	(инв.№ 210134000000702)
	8. Пульт премиум класса микшерный Behringer XENYX 1832 FX
	1 шт.
	(инв.№ 41013400000986)
	9. Радиосистема вокальная 16-ти канальная двухантенная 1 шт.
	(инв. №410134000000990) 10. Радиосистема двухантенная петличная 1 шт. (инв.
	10. Радиосистема двухантенная петличная 1 шт. (инв. №410134000000989)
	11. Экран 1 шт.
Учебная лаборатория	1. Парты 17 шт.
(Учебный корпус № 28 ауд. 337)	2. Стулья 37 шт.
1 2	3. Доска меловая 1 шт.
	4. Шкафы 1 шт.
	5. Монохронометр УМ-2 1 шт. (инв.№ 410134000003080)
	6. Типовой комплект оборудования лаборатории «Квантовая
	физика» 1 шт. (инв.№ 410124000603114)
	7. Установка для экспер. изуч.з-нов тепл.изл. 1 шт. (инв.№ 41013400000313)
	8. Лабораторный комплекс ЛКО-1 М «Когерентная оптика» (с
	полупроводниковым лазером) 1 шт. (инв.№ 410124000602816)
	9. Гониометр 1 шт. (инв.№ 41013400000303)
Учебная лаборатория	1. Парты 20 шт.
(Учебный корпус № 28 ауд. 336)	2. Стулья 34 шт.
- · · · · · · · · · · · · · · · · · · ·	3. Доска меловая 1 шт.
	4. Шкафы 1 шт.
	5. Источник питания Б-5-49 1 шт. (инв.№ 110104000165)
	6. Источник питания Б-5-49 1 шт. (инв.№ 110104002611)
	7. Типовой комплект оборудования лаборатории «Квантовая фи-
Учебная лаборатория	зика» 1 шт. (инв. № 410124000603113) 1. Парты 16 шт.
учеоная лаооратория (Учебный корпус № 28 ауд. 335)	 парты то шт. Стулья 34 шт.
(* 100111111 Rophly 0 312 20 dyd. 333)	3. Доска меловая 1 шт.
	4. Шкафы 1 шт.
	5. Прибор ОППИР-017 1шт. (инв.№ 110104002616)
	6. Прибор ОППИР-017 1шт. (инв.№ 110104002030)
	7. Типовой комплект оборудования лаборатории «Волновые про-
	цессы» 1 шт. (инв.№ 410124000603117)
	8. Типовой комплект оборудования лаборатории «Электричество
	и магнетизм» 1 шт. (инв.№ 410124000603236)
Учебная лаборатория	1. Парты 9 шт.
(Учебный корпус № 28 ауд. 332)	2. Стулья 20 шт.
	3. Шкафы 2 шт. 4. Типовой комплект оборудования лаборатории «Молекулярная
	физика и термодинамика» 1 шт. (инв.№ 410124000603106)

Учебная лаборатория (Учебный корпус № 28 ауд. 333)	 Парты 13 шт. Стулья 27 шт. Генератор Г-3-118 1 шт. (инв.№ 110104000353) Типовой комплект оборудования лаборатории «Физические основы механики» 1 шт. (инв. №410124000603115) 			
Учебная аудитория для проведения занятий семинарского типа (Учебный корпус № 28 ауд. 328)	1. Парты 14 шт. 2. Стулья 2 шт. 3. Доска меловая 2 шт. 4. Стол преподавателя 1 шт.			
Учебная аудитория для проведения занятий семинарского типа (Учебный корпус № 28 ауд. 324)	 Парты 10 шт. Стулья 1 шт. Доска меловая 1 шт. Стол преподавателя 1 шт. 			
Учебная лаборатория (Учебный корпус № 28 ауд. 306а)	 Лабораторные столы 19 шт. Стулья 45 шт. Доска меловая 1 шт. Шкафы 7 шт. Типовой комплект оборудования лаборатории «Молекулярная физика и термодинамика» 1 шт. (инв.№ 410124000603106) Типовой комплект оборудования лаборатории «Физические основы механики» 1 шт. (инв. № 410124000603115) 			
Учебная лаборатория (Учебный корпус № 28 ауд. 306б)	 Лабораторные столы 27 шт. Стулья 57 шт. Доска меловая 1 шт. Шкафы 2 шт. Типовой комплект оборудования лаборатории «Квантовая физика» 1 шт. (инв.№ 410124000603113) Типовой комплект оборудования лаборатории «Волновые процессы» 1 шт. (инв.№ 410124000603117) Типовой комплект оборудования лаборатории «Электричество и магнетизм» 1 шт. (инв.№ 410124000603236) 			
Учебная аудитория для проведения занятий семинарского типа (Учебный корпус № 28 ауд. 307)	 Лабораторные столы 15 шт. Стол для преподавателя 1 шт. Стулья 47 шт. Доска меловая 2 шт. Шкафы 1 шт. 			
Центральная научная библиотека имени Н.И. Железнова РГАУ-МСХА имени К.А. Тимирязева, включающая 9 читальных залов (в том числе 5 компьютеризованных), организованных по принципу открытого доступа и оснащенных Wi-Fi, Интернет - доступом Общежития N4, N5 и N 11 Комнаты для самоподготовки.				

11. Методические рекомендации студентам по освоению дисциплины

После каждой лекции требуется самостоятельная проработка изложенного материала. При подготовке к практическому занятию необходимо повторить теоретический материал по теме и решить задачи, рекомендованные преподавателем по соответствующей теме. Перед занятием по выполнению лабораторной работы необходимо подготовить конспект работы, внимательно изучив содержание методических указаний, и запомнить порядок выполнения.

Виды и формы отработки пропущенных занятий

Студент, пропустивший <u>лекцию</u>, обязан отработать теоретический материал по соответствующей теме самостоятельно.

Студент, пропустивший <u>практическое занятие</u>, должен получить у преподавателя дополнительные задачи по соответствующей теме, решить их и сдать преподавателю.

Студент, пропустивший <u>лабораторную работу</u>, обязан ее отработать (выполнить, рассчитать и защитить) в дополнительное время, заранее договорившись с преподавателем.

12. Методические рекомендации преподавателям по организации обучения по дисциплине.

Для более успешного освоения дисциплины «Физика» рекомендуется сначала давать студентам лекционный материал, а затем закреплять его виде практических и лабораторных занятий.

Изучение курса складывается из лекций, практических занятий и лабораторных занятий, и самостоятельной работы студентов.

На лекциях освещаются основополагающие вопросы программы. Часть разделов выносится на самостоятельную проработку.

Практические занятия предусматривают развитие у студентов навыков количественного анализа физических процессов, составляющих суть программы. Формируются приемы рассмотрения конкретных вопросов с позиции фундаментальных законов науки.

Лабораторные работы наглядно демонстрируют физические законы и явления.

Thank

Программу разработали:

Храмінина Э.В. ст. преподаватель

Попов А.И. к.т.н., доцент

РЕЦЕНЗИЯ

на рабочую программу дисциплины Б1. О.07 «Физика»

ОПОП ВО по направлению 13.03.02 — «Электроэнергетика и электротехника», направленность «Электроснабжение», (квалификация выпускника – бакалавр).

Карнауховым Вячеславом Михайловичем, доцентом кафедры высшей математики ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», кандидатом физико — математических наук (далее по тексту рецензент), проведена рецензия рабочей программы дисциплины «Физика» ОПОП ВО по направлению 13.03.02 — «Электроэнергетика и электротехника», направленности «Электроснабжение» (бакалавриат) разработанной в ФГБОУ ВО «Российский государственный аграрный университет — МСХА имени К.А. Тимирязева», на кафедре физики (разработчики — Храмшина Элеонора Вячеславовна старший преподаватель кафедры физики, Попов Александр Иванович доцент кафедры физики, кандидат физико-технических наук).

Рассмотрев представленные на рецензию материалы, рецензент пришел к следующим выводам:

- 1. Предъявленная рабочая программа дисциплины «Физика» (далее по тексту Программа) <u>соответствует</u> требованиям ФГОС ВО по направлению 13.03.02 «Электроэнергетика и электротехника», направленности «Электроснабжение». Программа <u>содержит</u> все основные разделы, <u>соответствует</u> требованиям к нормативно-методическим документам.
- 2. Представленная в Программе *актуальность* учебной дисциплины в рамках реализации ОПОП ВО *не подлежит сомнению* дисциплина относится к обязательной части учебного цикла Б1.
- 3. Представленные в Программе *цели* дисциплины <u>соответствуют</u> требованиям ФГОС ВО направления 13.03.02 «Электроэнергетика и электротехника».
- 4. В соответствии с Программой за дисциплиной «Физика» закреплена **4 компетенции/ (индикаторы достижения компетенций):** УК-1(УК-1.2); УК-3(УК-3.2); ОПК-2(ОПК-2.5) ОПК-2(ОПК-2.6). Дисциплина «Физика» и представленная Программа <u>способна реализовать</u> их в объявленных требованиях.
- 5. *Результаты обучения*, представленные в Программе в категориях знать, уметь, владеть <u>соответствуют</u> специфике и содержанию дисциплины и <u>демонстрируют возможность</u> получения заявленных результатов.
- 6. Общая трудоёмкость дисциплины «Физика» составляет 13 зачётных единицы (468 часов).
- 7. Информация о взаимосвязи изучаемых дисциплин и вопросам исключения дублирования в содержании дисциплин соответствует действительности. Дисциплина «Физика» взаимосвязана с другими дисциплинами ОПОП ВО и Учебного плана по направлению 13.03.02 «Электроэнергетика и электротехника» и возможность дублирования в содержании отсутствует. Поскольку дисциплина не предусматривает наличие специальных требований к входным знаниям, умениям и компетенциям студента, хотя может являться предшествующей для специальных, в том числе профессиональных дисциплин, использующих знания в области физики в профессиональной деятельности бакалавра по данному направлению подготовки.
- 8. Представленная Программа предполагает использование современных образовательных технологий, используемых при реализации различных видов учебной работы. Формы образовательных технологий *соответствуют* специфике дисциплины.
 - 9. Программа дисциплины «Физика» предполагает занятия в интерактивной форме.
- 10. Виды, содержание и трудоёмкость самостоятельной работы студентов, представленные в Программе, *соответствуют* требованиям к подготовке выпускников, содержащимся во ФГОС ВО направления 13.03.02 «Электроэнергетика и электротехника».
- 11. Представленные и описанные в Программе формы *текущей* оценки знаний <u>соответствуют</u> специфике дисциплины и требованиям к выпускникам.

Форма промежуточного контроля знаний студентов, предусмотренная Программой, осуществляется в форме экзамена (2 семестр), зачета с оценкой (3 семестр) и экзамена (4 семестр), что <u>соответствует</u> статусу дисциплины, как дисциплины обязательной части учебного цикла – Б1 ФГОС ВО направления 13.03.02 – «Электроэнергетика и электротехника». Формы оценки знаний, представленные в Программе, <u>соответствуют</u> специфике дисциплины и требованиям к выпускникам.

- 12. Учебно-методическое обеспечение дисциплины представлено: основной литературой 3 источника (базовые учебники), дополнительной литературой 3 наименования и <u>соответствует</u> требованиям $\Phi \Gamma OC$ ВО направления 13.03.02 «Электроэнергетика и электротехника». Материально-техническое обеспечение дисциплины соответствует специфике дисциплины «Физика» и обеспечивает использование современных образовательных, в том числе интерактивных методов обучения.
- 13. Методические рекомендации студентам и методические рекомендации преподавателям по организации обучения по дисциплине дают представление о специфике обучения по дисциплине «Физика».

ОБЩИЕ ВЫВОДЫ

На основании проведенной рецензии можно сделать заключение, что характер, структура и содержание рабочей программы дисциплины «Физика» ОПОП ВО по направлению 13.03.02 — «Электроэнергетика и электротехника», направленности «Электроснабжение» (квалификация выпускника — бакалавр), разработанная Храмшиной Элеонорой Вячеславовной старшим преподавателем кафедры физики, Поповым Александром Ивановичем доцентом кафедры физики, кандидатом физико — технических наук, соответствует требованиям ФГОС ВО, современным требованиям экономики, рынка труда и позволит при её реализации успешно обеспечить формирование заявленных компетенций.

Рецензент:	Карнаухов Вячеслав Михайлович, доцент кафедры высшей математики ФГБОУ ВО «Российский государственный аграрный университет – МСХА имени К.А. Тимирязева», кандидат физико – математических наук					
	(долидон)	«_ 26 »	08	2015 г.		